Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T14:01:07.478Z Has data issue: false hasContentIssue false

COMPUTER-ASSISTED MEASUREMENT AND ANALYSIS OF CHROMATIN DISTRIBUTION FOR DETERMINING QUALITY DIFFERENCES AMONG BARK BEETLE (SCOLYTIDAE) POPULATIONS

Published online by Cambridge University Press:  31 May 2012

T.S. Sahota
Affiliation:
Department of Agriculture, Pacific Forestry Centre, 506 W. Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
F.G. Peet
Affiliation:
Department of Agriculture, Pacific Forestry Centre, 506 W. Burnside Road, Victoria, British Columbia, Canada V8Z 1M5
Get access

Abstract

Digital image processing was used to analyse chromatin distribution patterns of fat body nuclei of five populations of Dendroctonus pseudotsugae Hopkins taken from standing (UST) trees, stressed standing (SST) trees and downed (DT) trees. At the population level, chromatin distribution patterns of DT beetles were closely grouped, whereas those from the other beetles were not. Individual nuclei from the DT and UST populations could be correctly assigned to their groups with great accuracy (96% and 90%, respectively), but only 65% of the individual nuclei from the SST population could be accurately classified, the SST population was intermediate, and nuclei from many of its members resembled those from one or other of the two extreme groups. Digital image processing quickly revealed very minute differences in the distribution patterns that would be impossible to detect by conventional microscopy. This method of analysing chromatin distribution patterns, therefore, is a useful technique for identifying qualitative differences among populations long before more obvious external manifestations of the differences appear.

Résumé

La technique du traitement numérique d'images a été appliquée à l'analyse des configurations de la chromatine dans les noyaux du corps gras de cinq populations de Dendroctonus pseudotsugae Hopkins prélevés sur des arbres sur pied (AP), des arbres sur pied stressés (AS) et des arbres abattus (AA). Au niveau des populations, les distributions de la chromatine chez les scolytes AA étaient très étroitement groupées, ce qui n'était pas le cas avec les deux autres groupes. Les noyaux individuels obtenus des cellules des populations AA et AP pouvaient être le plus correctement assignés à leur groupe (succès de 96% et de 90%, respectivement). Mais seulement 65% des noyaux individuels du groupe AS pouvaient être attribués à leur groupe car bon nombre d'entre eux, dans cette catégorie intermédiaire, ressemblaient à des noyaux de l'un ou l'autre des deux groupes extrêmes. Le traitement numérique d'images a très rapidement mis en évidence des différences minimes dans la distribution de la chromatine qu'il aurait été impossible de détecter par la simple microscopie. Cette technique d'analyse se révèle donc très utile pour l'identification de différences qualitatives entre populations bien avant que des manifestations externes, plus évidentes, n'apparaissent.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agard, D.A., and Sedat, J.W.. 1983. Three-dimensional architecture of a polytene nucleus. Nature (London) 320: 676681.Google Scholar
Agee, H.R., and Park, M.L.. 1975. Use of electroretinogram to measure the quality of insect vision. Environ. Lett. 10: 171.Google Scholar
Bartels, P.H., and Olson, G.B.. 1980. Computer analysis of lymphocyte images, pp. 167in Catsimpoolas, N., Methods of Cell Separation, Vol. 3. Plenum Press, New York.Google Scholar
Bingham, P.M. 1980. The regulation of white locus expression: a dominant allele at the white locus of Drosophila melanogaster. Genetics 95: 341353.Google Scholar
Clever, U., and Romball, C.G.. 1966. RNA and protein synthesis in the cellular response to a hormone, ecdysone. Proc. Natl. Acad. Sci. U.S.A. 56: 14701476.Google Scholar
Doane, W.W. 1973. Role of hormones in insect development, pp. 291466in Counce, C.J., and Waddington, C.H. (Eds.), Developmental Systems: Insects, Vol. 2. Academic Press, New York.Google Scholar
Duda, R.O., and Hart, P.E.. 1973. Pattern classification and scene analysis. John Wiley, New York. pp. 201–202, 228.Google Scholar
Engelmann, F. 1970. The physiology of insect reproduction. Academic Press, New York. pp. 156160.Google Scholar
Evans, H.J., and Bigger, R.T.L.. 1961. Chromatin aberrations induced by gamma irradiation. 2: Non-randomness in the distribution of chromatin aberrations in relation to chromosome length in Vicia faba root-tip cells. Genetics 46: 277289.Google Scholar
Farris, S.H., Sahota, T.S., Ibaraki, A., and Thomson, A.J.. 1982. Use of pectinase to dissociate plant cell nuclei for squash preparation: effect of hydration procedures. Stain Technol. 57: 283288.Google Scholar
Ibaraki, A., and Sahota, T.S.. 1976. Effect of insect growth regulators on the survival of Douglas-fir beetle progeny. Dep. Environ. Can. Forest Serv. Bi-Monthly Res. Notes 32: 3.Google Scholar
Jack, J.W., and Judd, B.H.. 1979. Allelic pairing and gene regulation: a model for the zeste-white interaction in Drosophila melanogaster. Proc. Natl. Acad. Sci. U.S.A. 76: 13681372.Google Scholar
Leonard, D.E. 1971. Population quality, pp. 720in Towards Integrated Control. U.S. Dep. Agric., Forest Serv. Res. Pap. NE-194.Google Scholar
Peet, F.G., and Sahota, T.S.. 1984. A computer-assisted cell identification system. Anal. Quant. Cytol. 6: 5970.Google Scholar
Peet, F.G., and Sahota, T.S.. 1985. Surface curvature as a measure of image texture. I.E.E.E. Trans. Pattern Anal. Mach. Intell. PAMI 7: 734738.Google Scholar
Peet, F.G., and Sahota, T.S.. 1987. A digital image processing system for entomological studies, pp 5863in I.E.E.E. Pacific Rim conference on communications, computers, and signal processing, Victoria, B.C., 4–5 June.Google Scholar
Safranyik, L., and Linton, D.A.. 1985. Influence of competition on size, brood production and sex ratio in spruce beetles (Coleoptera: Scolytidae). J. ent. Soc. B.C. 82: 5256.Google Scholar
Sahota, T.S., Chapman, J.A., and Nijholt, W.W.. 1970. Ovary development in a scolytid beetle, Dendroctonus pseudotsugae (Coleoptera: Scolytidae): effect of farnesyl methyl ether. Can. Ent. 102: 14241428.Google Scholar
Sahota, T.S., and Ibaraki, A.. 1979. Effect of host tree activity on the rate of yolk protein deposition in Dendroctonus rufipennis (Coleoptera: Scolytidae). Can. Ent. 111: 13191323.Google Scholar
Sahota, T.S., and Farris, S.H.. 1980. Inhibition of flight muscle degeneration by precocene II in the spruce bark beetle, Dendroctonus rufipennis (Kirby) (Coleoptera: Scolytidae). Can. J. Zool. 58: 378381.Google Scholar
Sahota, T.S., and Thomson, A.J.. 1979. Temperature induced variation in the rates of reproductive processes in Dendroctonus rufipennis (Coleoptera: Scolytidae): a new approach to detecting changes in population quality. Can. Ent. 111: 10691078.Google Scholar
Sahota, T.S., Peet, F.G., and Bartels, P.H.. 1984. Progress towards early detection of population quality differences in bark beetles (Coleoptera: Scolytidae). Can. Ent. 116: 481486.Google Scholar
Sahota, T.S., Peet, F.G., and Ibaraki, A.. 1987. Manipulation of egg gallery length to vary brood density in spruce beetle, Dendroctonus rufipennis (Coleoptera: Scolytidae): Effects on brood survival and quality. J. ent. Soc. B.C. 84: 5963.Google Scholar
Sahota, T.S., Peet, F.G., Ibaraki, A., and Farris, S.H.. 1986. Chromatin distribution and cell functioning. Can. J. Zool. 64: 19081913.Google Scholar
Smirnoff, W.A. 1973. Biochemical exploration in insect pathology, pp. 89106in Current Topics in Comparative Pathology, Vol. 2. Academic Press, New York.Google Scholar
Wellington, W.G. 1960. Qualitative changes in natural populations during changes in abundance. Can. J. Zool. 38: 289314.Google Scholar
Wellington, W.G. 1964. Qualitative changes in populations in unstable environments. Can. Ent. 96: 436451.Google Scholar
Wellington, W.G. 1976. Applying behavioural studies in entomological problems, pp. 8797in Anderson, J.F., and Kaya, H.K. (Eds.), Perspective in Forest Entomology. Academic Press, New York.Google Scholar
Wellington, W.G. 1977. Returning the insect to insect ecology: Some consequences for pest management. Environ. Ent. 6: 18.Google Scholar
Wellington, W.G. 1980. Dispersal and population change, pp. 1124in Berryman, A.A.A., and Safranyik, L. (Eds.), Dispersal of Forest Insects: Evaluation, Theory and Management Implications. Washington State Univ., Cooperative Extension Service, Pullman.Google Scholar
Wellington, W.G., and Maelzer, D.A.. 1967. Effects of farnesyl methyl ether on the reproduction of the westerntent caterpillar, Malacosoma pluviale: some physiological, ecological, and practical implications. Can. Ent. 99: 249263.Google Scholar
Werry, P.A., Stoffelsen, J.K., Engels, F.M., Van der Laan, F., and Spanjers, A.P.. 1977. The relative arrangement of chromosomes in mitotic interphase and metaphase in Haplopappus gracilis. Chromosoma (Berlin) 62: 93101.Google Scholar