Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-15T15:04:04.716Z Has data issue: false hasContentIssue false

WEATHER AND THE ECOLOGY OF APANTELES FUMIFERANAE VIER. (HYMENOPTERA: BRACONIDAE)

Published online by Cambridge University Press:  31 May 2012

Vincent G. Nealis*
Affiliation:
Great Lakes Forestry Cenre, P.O. Box 490, Sault Ste. Marie, Ontario, Canada P6A 5M7
Get access

Abstract

The effects of weather on the spruce budworm parasitoid, Apanteles fumiferanae Vier., are examined. A phenological model based on temperature-dependent rates of development and longevity is developed and validated with field data. The model is then used to explore the effects of age-specific mortality on phenological behaviour of the parasitoid and the seasonal synchrony between the parasitoid and its host over several years. The results show that the parasitoid adult ecloses well before the host reaches an age susceptible to parasitism but that the egg maturation period and the longevity of the parasitoid diminish the consequences of the apparent asynchrony. The historical data reveal that the relative phenological characteristics of A. fumiferanae and its host vary little from year to year. In the second part of the study, temperature is shown to have a strong effect on adult parasitoid activity and on the rate of oviposition.

Résumé

L'examen des effets de la température sur l'écologie d'Apanteles fumiferanae Vier., parasitoïde de la tordeuse des bourgeons de l'Epinette, épouse une démarche axée sur les processus. Dans un premier temps, on construit un modèle phénologique fondé sur la vitesse de croissance et la longévité en fonction de la température, puis on le valide au moyen de données de terrain. Le modèle se révélant fidèle, on s'en sert pour explorer les effets de la mortalité propre à chaque catégorie d'âge sur la phénologie du parasitoïde et sur le synchronisme saisonnier qu'il établit, sur plusieurs années, avec son hôte. Les résultats montrent que, même si l'adulte du parasitoïde émerge bien avant l'apparition des classes d'âge qui lui sont vulnérables chez son hôte, sa longévité considérable et la période nécessaire à la maturation des oeufs lui permettent d'atténuer les conséquences de ce décalage apparent. L'analyse des antécédents révèle que la phénologie relative d'A. fumiferanae et de son hôte varie peu d'une année à l'autre. Dans la deuxième partie de l'étude, il est montré que la température influe fortement sur l'activité de l'adulte du parasitoïde et sur l'intensité de la ponte.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brown, N.R. 1946. Studies on parasites of the spruce budworm, Archips fumiferana (Clem.) 1: life history of Apanteles fumiferanae Viereck (Hymenoptera, Braconidae). Can. Ent. 78: 121129.Google Scholar
Burnett, T. 1949. The effect of temperature on an insect host–parasite population. Ecology 30: 113134.Google Scholar
Elliott, N.C., Simmons, G.A., and Drapek, R.J.. 1986. Adult emergence and activity patterns of parasites of early instar jack pine budworm (Lepidoptera: Tortricidae). Environ. Ent. 15: 409416.Google Scholar
Gilbert, N. 1984. Control of fecundity in Pieris rapae I. The problem. J. Anim. Ecol. 53: 581588.Google Scholar
Greenbank, D.O. 1956. The role of climate and dispersal in the initiation of outbreaks of the spruce budworm in New Brunswick. 1: the role of climate. Can. J. Zool. 34: 4534176.Google Scholar
Greenbank, D.O., Schaefer, G.W., and Rainey, R.C.. 1980. Spruce budworm (Lepidoptera: Tortricidae) moth flight and dispersal: new understanding from canopy observations, radar, and aircraft. Mem. ent. Soc. Can. 110. 49 pp.Google Scholar
Griffiths, K. J. 1969. The importance of coincidence in the functional and numerical responses of two parasites of the European pine sawfly, Neodiprion sertifer. Can. Ent. 101: 673713.Google Scholar
Juillet, J.A. 1964. Influence of weather on flight activity of parasitic Hymenoptera. Can. J. Zool. 42: 11331141.Google Scholar
Lederhouse, R.C., Codella, S.G., and Cowell, P.J.. 1987. Diurnal predation on roosting butterflies during inclement weather: a substantial source of mortality in the black swallowtail, Papilio polyxenes (Lepidoptera: Papilionidae). J.N.Y. ent. Soc. 95: 310319.Google Scholar
Logan, J.A., Wollkind, D.J., Hoyt, S.C., and Tanigoshi, L.K.. 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Ent. 5: 11331140.Google Scholar
McGugan, B.M. 1955. Certain host–parasite relationships involving the spruce budworm. Can. Ent. 87: 178187.Google Scholar
Miller, C.A. 1959. The interaction of the spruce budworm Choristoneura fumiferana (Clem.), and the parasite Apanteles fumiferanae Vier. Can. Ent. 91: 457477.Google Scholar
Miller, C.A., and Renault, T.R.. 1976. Incidence of parasitoids attacking endemic spruce budworm (Lepidoptera: Tortricidae) populations in New Brunswick. Can. Ent. 108: 10451052.Google Scholar
Miller, C.A., Varty, I.W., Thomas, A.W., Greenbank, D.O., and Kettela, E.G.. 1980. Aerial spraying of spruce budworm moths, New Brunswick, 1972–1977. Dep. Environ., Can. For. Serv., Fredericton, N.B. Inf. Rep. M-X-110. 29 pp.Google Scholar
Morris, R.F. (Ed.) 1963. The dynamics of epidemic spruce budworm populations. Mem. ent. Soc. Can. 31. 332 pp.Google Scholar
Münster-Swendsen, M., and Nachman, G.. 1978. Asynchrony in insect host–parasite interaction and its effect on stability, studied by a simulation model. J. Anim. Ecol. 47: 159171.Google Scholar
Nealis, V.G. 1987. The number of instars in jack pine budworm, Choristoneura pinuspinus Free. (Lepidoptera: Tortricidae) and the effect of parasitism on head capsule width and development time. Can. Ent. 119: 773777.Google Scholar
Nealis, V.G., and Fraser, S.. 1988. Rate of development, reproduction, and mass-rearing of Apanteles fumiferanae Vier. (Hymenoptera: Branconidae) under controlled conditions. Can. Ent. 120: 197204.Google Scholar
Nyrop, J.P., and Simmons, G.A.. 1986. Temporal and spatial activity patterns of an adult parasitoid, Glypta fumiferanae (Hymenoptera: Ichneumonidae), and their influence on parasitism. Environ. Ent. 15: 481487.Google Scholar
Perry, D.F., and Régnière, J.. 1986. The role of fungal pathogens in spruce budworm population dynamics: frequency and temporal relationships, pp. 167–170 in Samson, Robert A., Vlak, Just M., and Peters, Dick (Eds.), Fundamental and Applied Aspects of Invertebrate Pathology. Found. Fourth Intl. Coll. Invertebr. Pathol., Wageningen, the Netherlands. 711 pp.Google Scholar
Régnière, J. 1982. A process-oriented model of spruce budworm phenology (Lepidoptera: Tortricidae). Can. Ent. 114: 811825.Google Scholar
Régnière, J. 1984. A method of describing and using variability in development rates for the simulation of insect phenology. Can. Ent. 116: 13671376.Google Scholar
Régnière, J. 1987. Temperature-dependent development of eggs and larvae of Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae) and simulation of its seasonal history. Can. Ent. 119: 717728.Google Scholar
Regniere, J., and Fletcher, R.M.. 1983. Direct measurement of spruce budworm (Lepidoptera: Tortricidae) larval dispersal in forest stands. Environ. Ent. 12: 15321538.Google Scholar
Royama, T. 1984. Population dynamics of the spruce budworm Choristoneura fumiferana. Ecol. Monogr. 54: 429462.Google Scholar
Townes, H. 1972. A light-weight Malaise trap. Ent. Newsl 83: 239247.Google Scholar
Wellington, W.G. 1949a. The effects of temperature and moisture upon the behaviour of the spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae). 1: the relative importance of graded temperatures and rates of evaporation in producing aggregations of larvae. Sci. Agric. 29: 201215.Google Scholar
Wellington, W.G. 1949b. The effects of temperature and moisture upon the behaviour of the spruce budworm, Choristoneura fumiferana Clemens (Lepidoptera: Tortricidae). 2: the responses of larvae to gradients of evaporation. Sci. Agric. 29: 216229.Google Scholar
Wellington, W.G. 1954. Weather and climate in forest entomology. Meteorol. Monogr. 2: 1118.Google Scholar
Wellington, W.G. 1977. Returning the insect to insect ecology: some consequences for pest management. Environ. Ent. 6: 18.Google Scholar
Wellington, W.G., Fettes, J.J., Turner, K.B., and Belyea, R.M.. 1950. Physical and biological indicators of the development of outbreaks of the spruce budworm, Choristoneura fumiferana (Clem.) (Lepidoptera: Tortricidae). Can. J. Res. 28: 308331.Google Scholar
Wellington, W.G., and Henson, W.R.. 1947. Notes on the effects of physical factors on the spruce budworm, Choristoneura fumiferana (Clem.). Can. Ent. 72: 168170.Google Scholar
Wellington, W.G., and Trimble, R.M.. 1984. Weather, pp. 399–425, chapter 13 in Huffaker, C.B., and Rabb, R.L. (Eds.), Ecological Entomology. J. Wiley, New York. 844 pp.Google Scholar