Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T10:15:19.188Z Has data issue: false hasContentIssue false

STRATEGIES FOR THE USE OF ENTOMOPATHOGENS IN THE CONTROL OF THE DESERT LOCUST AND OTHER ACRIDOID PESTS

Published online by Cambridge University Press:  31 May 2012

C. Prior
Affiliation:
Intemational Institute of Biological Control, Silwood Park, Ascot SL5 7TA, United Kingdom
D.A. Streett
Affiliation:
USDA/ARS Rangeland Insect Laboratory, Bozeman, Montana, USA 59717-0366
Get access

Abstract

Large-scale applications of non-persistent but broad-spectrum chemical insecticides in Africa during the 1980s for control of acridoid pests, particularly the desert locust (Schistocerca gregaria Forskål) and Sahelian pest grasshoppers, raised concern about environmental damage and human safety. Similar concerns have been expressed in Australia, the United States, and Canada and have led to a search for alternative strategies. To lessen dependence on chemicals, an integrated pest management (IPM) approach for grasshopper control has been encouraged in the United States with emphasis on biological control as an important component and this is also desirable elsewhere, but additional biocontrol components are needed. Current strategies for most pest acridoids rely on short-term destruction of outbreak populations. Nymphs are the preferred target wherever possible and inundative augmentation of entomopathogenic deuteromycete fungi formulated as biopesticides could replace chemical spraying in some cases, especially where the major threat is to crops remote from the pest breeding areas. Entomopathogens are slower acting than chemicals and thus best suited for use where the pest is not immediately threatening to crops. Schistocerca gregaria and Oedaleus senegalensis Krauss pose particularly difficult problems because of the very large area and inaccessibility of their potential breeding grounds, their very sudden upsurges, and their great mobility as adult swarms. Fast-acting chemicals are likely to be needed when rapid intervention is required to control these pests, but an IPM strategy could incorporate biopesticide application in the early stages of upsurges and also be used for swarm control in some cases. However, improved prediction and monitoring are needed to facilitate the use of biopesticides and other IPM techniques against these pests.

Résumé

Au cours des années 1980, en Afrique, l'utilisation sur une grande échelle d'insecticides chimiques à action de courte durée mais à large spectre pour lutter contre les acridiens ravageurs, surtout le Criquet pèlerin, Schistocerca gregaria, et autres criquets ravageurs au Sahel, a soulevé des polémiques quant à leurs effets sur l'environnment et sur les populations humaines. Ces inquiétudes ont déjà été formulées en Australie, aux états-Unis et au Canada et elles ont suscité la recherche d'autres stratégies. Afin de diminuer l'utilisation des produits chimiques, un programme de lutte intégrée (IPM) contre les criquets, programme axé surtout sur la lutte biologique, a été mis sur pied aux états-Unis; la mise en oeuvre d'une telle pratique est nécessaire en d'autres endroits, mais elle doit comporter des composantes additionnelles de lutte biologique. En effet, les stratégies actuelles de lutte contre les acridiens reposent sur la destruction à court terme des populations epidémiques. Les larves doivent être la principale cible lorsque c'est possible, et l'utilisation en masse de champignons deutéromycètes entomopathogènes sous forme de biopesticides pourrait éventuellement remplacer les vaporisations chimiques en certains cas, particulièrement lorsque les cultures menacées sont éloignées des zones de reproduction des ravageurs. Les entomopathogènes ont une action plus lente que les pesticides chimiques et sont particulièrement appropriés aux endroits où les ravageurs ne constituent pas une menace immédiate pour les cultures. Schistocerca gregaria et Oedaleus senegalensis Krauss sont la cause de problèmes particulièrement difficiles à résoudre à cause de l'ampleur et de l'inaccesibilité de leurs territoires de reproduction potentiels, à cause de leur apparition épidémique et des déplacements considérables de nuées d'adultes. Des produits chimiques à action immédiate s'avèrent essentiels lorsqu'une intervention rapide est nécessaire pour lutter contre ces ravageurs, mais une stratégie de lutte intégrée pourrait comporter une application de biopesticides au début de l'épidémie et également une phase de lutte contre les nuées d'adultes en certains cas. Cependant, les méthodes de pronostic et de détection doivent être raffinées afin de rendre possible l'utilisation de biopesticides et d'autres techniques de lutte intégrée contre ces ravageurs. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Royal Horticultural Society's Garden, Wisley, Woking GU23 6QB, United Kingdom.

2

Present address: USDA/ARS Southern Insect Management Unit, P.O. Box 346, Stoneville, Mississippi 38776, USA.

References

Amatobi, C.I., Apeji, S.A. and Oyidi, O.. 1988. Effects of farming practices on populations of two grasshopper pests (Kraussaria angulifera Krauss and Oedaleus senegalensis Krauss) (Orthoptera: Acrididae) in Northern Nigeria. Tropical Pest Management 34: 173179.Google Scholar
Anon. 1990. Office of Technology Assessment, A Plague of Locusts. Special Report OTA–F–450: 129 pp. United States Government Printing Office. Washington, DC.Google Scholar
Baker, G.L. and Capinera, J.L.. 1997. Nematodes and nematomorphs as control agents of grasshoppers and locusts. pp. 157–211 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Bateman, R. 1997. Methods of application of microbial pesticide formulations for the control of grasshoppers and locusts, pp. 69–81 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Bateman, R. 1992. The Desert Locust Guidelines 5: Campaign Organisation and Execution. FAO, Rome. 26 pp.Google Scholar
Bennett, L.V. 1976. The development and termination of the 1968 plague of the Desert Locust, Schistocerca gregaria (Forskal) (Orthoptera: Acrididae). Bulletin of Entomological Research 66: 511552.Google Scholar
Bidochka, M.J. and Khachatourians, G.G.. 1991. Microbial and protozoan pathogens of grasshoppers and locusts as potential biocontrol agents. Biocontrol Science and Technology 1: 243259.Google Scholar
Brader, L. 1988. Control of grasshoppers and migratory locusts. Proceedings of the Brighton Crop Protection Conference - Pests and Diseases 1988: 283288.Google Scholar
Bucher, G.E. 1959. The bacterium Coccobacillus acridiorum d'Herelle: Its taxonomic position and status as a pathogen of locusts and grasshoppers. Journal of Insect Pathology 1: 331346.Google Scholar
Canning, E.U. 1953. A new microsporidian, Nosema locustae n. sp. from the fat body of the African migratory locust, Locusta migratoria migratorioides R. & F. Parasitology 43: 287290.Google Scholar
Canning, E.U. 1962. The pathogenicity of Nosema locustae Canning. Journal of Insect Pathology 4: 248256.Google Scholar
Carruthers, R.I. 1992. Influence of thermal ecology on the mycosis of a rangeland grasshopper. Ecology 73: 190204.Google Scholar
Carruthers, R.I. and Onsager, J.A.. 1993. A perspective on the use of exotic natural enemies for biological control of pest grasshoppers (Orthoptera: Acrididae). Environmental Entomology 22: 885903.Google Scholar
Carruthers, R.I., Ramos, M.E., Larkin, T.S., Hostetter, D.L. & Soper, R.S.. 1997. The Entomophaga grylli (Fresenius) Batko species complex: Its biology, ecology and use for biological control of pest grasshoppers, pp. 329–353 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Caudwell, R.W. 1993. Bait formulations of microbial agents for grasshopper control. Biocontrol News and Information 14: 53N57N.Google Scholar
Chapman, R.F. and Page, W.W.. 1979. Factors affecting the mortality of the grasshopper, Zonocerus variegatus, in southern Nigeria. Journal of Animal Ecology 48: 271288.Google Scholar
Cheke, R.A. and Holt, J.. 1993. Complex dynamics of desert locust plagues. Ecological Entomology 18: 109115.Google Scholar
Cunningham, G.L. 1992. APHIS; grasshopper integrated pest management in the United States—a co-operative project with emphasis on biological control, pp. 21–25 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Dempster, J.P. 1963. The population dynamics of grasshoppers and locusts. Biological Reviews 38: 490529.Google Scholar
d'Hérelle, F. 1911. Sur une epízootie de nature bactérienne sévissant sur les sauterelles au Mexique. Compte Rendu hebdomadaire des séances de l'Academie des Sciences 152: 14131415.Google Scholar
d'Hérelle, F. 1914 a. Le coccobacille des sauterelles. Annales de l'Institut Pasteur 28: 280328.Google Scholar
d'Hérelle, F. 1914 b. Le coccobacille des sauterelles. Annales de l'Institut Pasteur 28: 387407.Google Scholar
Everts, J.W. 1990. Environmental Effects of Chemical Locust and Grasshopper Control. Project ECLO/SEN/003/NET. FAO, Rome, 1990. 277 pp. plus Annexes.Google Scholar
Farrow, R. 1984. The locust and grasshopper problem in China today. The Journal of the Australian Institute of Agricultural Science 1984: 161166.Google Scholar
Greathead, D.J. 1992. Natural enemies of tropical locusts and grasshoppers: Their impact and potential as biological control agents, pp. 105–121 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Gruys, P. 1994. Lessons learnt from the last Desert Locust plague 1986–1980. pp. 19–30 in van Huis, A. (Ed.), Desert Locust Control with Existing Techniques: An Evaluation of Strategies. Proceedings of the Seminar held in Wageningen, the Netherlands, 6–11 December 1993. Wageningen Agricultural University, Wageningen.Google Scholar
Harper, J. 1987. Applied epizootiology: Microbial control of insects, pp. 473–496 in Fuxa, J.R., and Tanada, Y. (Eds.), Epizootiology of Insect Diseases. John Wiley and Sons, New York, USA. 555 pp.Google Scholar
Haskell, P.T. 1992. Infamous species: The locust. Biologist 39: 111117.Google Scholar
Henry, J.E. 1977. Development of microbial agents for the control of Acrididae. Revista de la Sociedad Entomologica Argentina 36: 125134.Google Scholar
Humber, R.A. 1989. Synopsis of a revised classification for the Entomophthorales (Zygomycotina). Mycotaxon 34: 441460.Google Scholar
Jaronski, S.T. and Goettel, M. S.. 1997. Development of Beauveria bassiana for control of grasshoppers and locusts pp. 225–237 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Johnson, D.L. 1997. Nosematidae and other Protozoa as agents for control of grasshoppers and locusts: Current status and prospects, pp. 375–389 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Johnson, D.L., Goettel, M.S., Bradley, C., van der Paauw, H. and Maiga, B.. 1992. Field trials with the entomopathogenic fungus Beauveria bassiana against grasshoppers in Mali, West Africa, July 1990. pp. 296–310 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Kremer, A.R. 1993. Pests and donors in Mali, 1985–1990. Disasters 16: 207216.Google Scholar
Langewald, J. and Schmutterer, H.. 1992. Effects of neem oil treatment on the phase status of desert locust, Schistocerca gregaria. pp. 142–154 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Launois, M. and Launois-Luong, M.H.. 1989. Oedaleus senegalensis (Krauss, 1877), sauteriau ravageur du Sahel. Collection Acridologie Opérationelle no. 4, CILSS-DFPV, Niger. 72 pp.Google Scholar
Lobo Lima, M.L., Brito, J.M. and Henry, J.E.. 1992. Biological control of grasshoppers in the Cape Verde islands. pp. 287–295 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Lomer, C.J., Bateman, R.P., Godonou, I., Kpindou, D., Shah, P., Paraiso, A. and Prior, C.. 1993. Field infection of Zonocerus variegatus following application of an oil-based formulation of Metarhizium flavoviride conidia. Biocontrol Science and Technology 3: 337346.Google Scholar
Lomer, C.J., and Prior, C. (Eds.). 1992. Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Lomer, C.J., Prior, C. and Kooyman, C.. 1997. Development of Metarhizium spp. for the control of grasshoppers and locusts, pp. 265–286 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 0400 pp.Google Scholar
Magor, J.I. 1994. Desert Locust population dynamics, pp. 3154in van Huis, A. (Ed.), Desert Locust Control with Existing Techniques: An Evaluation of Strategies. Proceedings of the Seminar held in Wageningen, the Netherlands, 6–11 December 1993. Wageningen Agricultural University, Wageningen.Google Scholar
Marcandier, S. and Khachatourians, G.G.. 1987. Susceptibility of the migratory grasshopper Melanoplus sanguinipes (Fab.) (Orthoptera: Acrididae) to Beauveria bassiana (Bals.) Vuillemin (Hyphomycete): Influence of relative humidity. The Canadian Entomologist 119: 901907.Google Scholar
Moore, D. and Caudwell, R. W.. 1997. Formulation of entomopathogens for the control of grasshoppers and locusts. pp. 49–67 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Mouhim, A. 1992. CNLA: Short report on the control strategy of acridids in Morocco 1987–89. pp. 38–40 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Nasseh, O., Freres, T., Wilps, H., Kirkilionis, E. and Krall, S.. 1992. Field cage trials on the effects of enriched neem oil, insect growth regulators and the pathogens Beauveria bassiana and Nosema locustae on desert locusts in the Republic of Niger, pp. 311–320 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Nasseh, O., Wilps, H., Rembold, H. and Krall, S.. 1993. Biologically active compounds in Melia volkensii. Larval growth inhibitor and phase modulator against the desert locust Schistocerca gregaria (Forskal) (Orth., Cyrtacanthacrinae). Journal of Applied Entomology 116: 111.Google Scholar
Obengofori, D., Torto, B. and Hassanali, A.. 1993. Evidence for the mediation of two releaser pheromones in the aggregation behaviour of the gregarious Desert Locust, Schistocerca gregaria (Forskal) (Orthoptera: Acrididae). Journal of Chemical Ecology 19: 16651676.Google Scholar
Obengofori, D., Torto, B., Njagi, P.G.N., Hassanali, A. and Amiani, H.. 1994. Fecal volatiles as part of the aggregation pheromone complex of the Desert Locust, Schistocerca gregaria (Forskal) (Orthoptera: Acrididae). Journal of Chemical Ecology 20: 20772087.Google Scholar
Peveling, R. and Weyrich, J.. 1992. Effects of neem oil, Beauveria bassiana and dieldrin on non-target tenebrionid beetles in the desert zone of the Republic of Niger, pp. 321–336 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Prior, C. and Greathead, D.J.. 1989. Biological control of locusts: The potential for the exploitation of pathogens. FAO Plant Protection Bulletin 37: 3748.Google Scholar
Prior, C., Jollands, P. and le Patourel, G.. 1988. Infectivity of oil and water formulations of Beauveria bassiana (Deuteromycotina: Hyphomycetes) to the cocoa weevil pest Pantorhytes plutus (Coleoptera: Curculionidae). Journal of Invertebrate Pathology 52: 6672.Google Scholar
Raina, S.K. 1992. ICIPE; development of a biocontrol strategy for the management of the desert locust, Schistocerca gregaria. pp. 54–56 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Roffey, J. 1994. The characteristics of early Desert Locust upsurges, pp. 5562in van Huis, A. (Ed.), Desert Locust Control with Existing Techniques: An Evaluation of Strategies. Proceedings of the Seminar held in Wageningen, the Netherlands, 6–11 December 1993. Wageningen Agricultural University, Wageningen.Google Scholar
Roffey, J., Popov, G.B. and Hemming, C.F.. 1970. Outbreaks and recession populations of the desert locust Schistocerca gregaria (Forskal). Bulletin of Entomological Research 59: 657680.Google Scholar
Rowley, J. and Bennett, O.. 1993. Grasshoppers and Locusts: The Plague of the Sahel. The Panos Institute, London. 114 pp.Google Scholar
Schaefer, E.E. 1936. The White Fungus Disease (Beauveria bassiana) among Red Locusts in South Africa, and Some Observations on the Grey Fungus Disease (Empusa grylli). Science Bulletin of the Department of Agriculture & Forestry, Union of South Africa 160: 28 pp.Google Scholar
Sekizawa, J., Eto, M., Miyamoto, J. and Matsuo, M.. 1992. Fenitrothion. Environmental Health Criteria 133: 184 pp. World Health Organisation, Geneva.Google Scholar
Shah, P. 1993. Observations on a species of Sorosporella (Deuteromycotina: Hyphomycetes) infecting Kraussaria angulifera Krauss (Orthoptera: Acrididae) in the Republic of Mali. Journal of Invertebrate Pathology 62: 318.Google Scholar
Showler, A.T. and Potter, C.S.. 1991. Synopsis of the 1986–1989 desert locust plague and the concept of strategic control. American Entomologist Summer 1991: 106110.Google Scholar
Stathers, T.E., Moore, D. and Prior, C.. 1993. The effect of different temperatures on the viability of Metarhizium flavoviride conidia stored in vegetable and mineral oils. Journal of Invertebrate Pathology 62: 111115.Google Scholar
Steedman, A. (Ed.). 1990. Locust Handbook, 3rd ed. Natural Resources Institute, Chatham, vi + 204 pp.Google Scholar
Stevenson, J.P. 1959. Epizootiology of a disease of the desert locust, Schistocerca gregaria (Forskål) caused by non-chromogenic strains of Serratia marcescens Bizio. Journal of Insect Pathology 1: 232244.Google Scholar
Streett, D.A. 1987. Future prospects for microbial control of grasshoppers, pp. 205–218 in Capinera, J.L. (Ed.), Integrated Pest Management on Rangeland, A Shortgrass Prairie Perspective. Westview Press, Boulder, CO. 426 pp.Google Scholar
Streett, D.A. and Henry, J.E.. 1990. Microbial Control of Locusts and Grasshoppers in the Semi-Arid Tropics. Proceedings Vth International Meeting of the Orthopterists' Society, Valsain, Spain. Boletin de Sanidad Vegetal, Plagas, Fuera de serie 20: 2127.Google Scholar
Streett, D.A. and McGuire, M.R.. 1990. Pathogenic diseases of grasshoppers, pp. 484516in Chapman, R.F., and Joern, A. (Eds.), Biology of Grasshoppers. John Wiley & Sons, New York, NY.Google Scholar
Streett, D.A., Woods, S.A. and Erlandson, M.A.. 1997. Entomopoxviruses of grasshoppers and locusts: Biology and biological control potential, pp. 115–130 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Symmons, P. 1992. Strategies to combat the desert locust. Crop Protection 11: 206212.Google Scholar
Tanada, Y. and Kaya, H.K.. 1993. Insect Pathology. Academic Press, San Diego, CA. 666 pp.Google Scholar
Torto, B., Obengofori, D., Njagi, P.G.N., Hassanali, A. and Amiani, H.. 1994. Aggregation pheromone system of adult gregarious Desert Locust Schistocerca gregaria Forskål. Journal of Chemical Ecology 20: 17491762.Google Scholar
USAID (United States Agency for International Development). 1989. Locust and Grasshopper Control in Africa/Asia. A Programmatic Environmental Assessment.Google Scholar
USAID (United States Agency for International Development). 1991. Review of Environmental Concerns in A.I.D. Programs for Locust and Grasshopper Control. Prepared by Louis Berger and Associates, Inc. and USAID. Office of Technical Resources, Bureau for Africa Publication Series No. 91–7. USAID, Washington, USA. 71 pp.Google Scholar
Uvarov, B. 1977. Grasshoppers and Locusts, Vol. 2. Centre for Overseas Pest Research, London. 613 pp.Google Scholar
van Huis, A. 1992. New developments in desert locust management and control. Proceedings of the Section Experimental and Applied Entomology, of the Netherlands Entomology Society (N.E.V.), Amsterdam 3: 218.Google Scholar
von Clausewitz, C. 1968. On War. Penguin Classics. 461 pp. [Translated from the German (Vom Kriege, 1832) by J.J. Graham and edited by A. Rapoport.]Google Scholar
Wilding, N., Mardell, S.K. and Brobyn, P.J.. 1986. Introducing Ernynia neoaphidis into a field population of Aphis fabae: Form of inoculum and effect of irrigation. Annals of Applied Biology 108: 373385.Google Scholar
Wilps, H. 1994. Report on the Control of Schistocerca gregaria in Mauritania August 1993 – February 1994. GTZ project “integrated biological locust control” PN 89.2031.6-01.100. Deutsche Gesellschaft fur Technische Zusammenarbeit GmbH, PO Box 5180, 65726 Eschborn, Germany. 14 pp.Google Scholar
Wilps, H., Nasseh, O. and Krall, S.. 1992. The effect of various neem products on the survival and flight activity of adult Schistocerca gregaria. pp. 337–346 in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, UK. 394 pp.Google Scholar
Wilps, H., Nasseh, O., Rembold, H. and Krall, S.. 1993. The effect of Melia volkensii extracts on mortality and fitness of adult Schistocerca gregaria (Forskål) (Orth., Cyrtacanthacrinae). Journal of Applied Entomology 116: 1219.Google Scholar
Wright, D.E. 1986. Economic assessment of actual and potential damage to crops caused by the 1984 Locust Plague in South-eastern Australia. Journal of Environmental Management 23: 293298.Google Scholar
Zelazny, B., Goettel, M. S. and Keller, B.. 1997. The potential of bacteria for the microbial control of grasshoppers and locusts, pp. 147–156 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar