Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-15T15:04:18.660Z Has data issue: false hasContentIssue false

SPATIAL AND TEMPORAL COMPUTER ANALYSIS OF INSECTS AND WEATHER: GRASSHOPPERS AND RAINFALL IN ALBERTA

Published online by Cambridge University Press:  31 May 2012

Daniel L. Johnson
Affiliation:
Agriculture Canada Research Station, Lethbridge, Alberta, Canada T1J 4B1
Adla Worobec
Affiliation:
The DPA Group Inc., 400 Monenco Place, 801 – 6 Avenue Southwest, Calgary, Alberta, Canada T2P 3W3
Get access

Abstract

New technology allows the rapid mapping of point or polygon variables, the correlation of maps, and the use of maps as variables in computer models. An illustration is the use of map correlation to investigate how changes in abundance of adult grasshoppers relate to rainfall in Alberta: maps of monthly rainfall, monthly hours of sunlight and annual grasshopper counts (8391 survey records) from a 5-year period were contoured and correlated. The methods of smoothing are described. Correlograms of Moran's I over distance show spatial autocorrelation of grasshopper abundance on a geographic scale. The grasshopper counts were autocorrelated to 20–30 km on most maps, and the relationship of correlograms to contour mapping is discussed. Quotient maps were produced: each population–abundance map was divided by the map from the previous year, and the results were correlated with monthly rainfall maps. There was significant association between areas of increase and levels of rainfall. Population tended to decline in areas of above-average rainfall. A simple model enabled a forecast of grasshopper distribution from the previous year's grasshopper population, monthly rainfall maps, and sunlight hours during the previous August.

Résumé

La nouvelle technologie de l'analyse spatiale permet la transcription sur carte des variables de point ou polygone, la corrélation des cartes et leur utilisation en tant que variables comme modèles pour ordinateur. Pour illustrer ces méthodes, nous avons utilisé la corrélation des cartes pour éxaminer en détail la relation entre les changements en nombre de sauterelles adultes et le niveau des précipitations en Alberta. Nous avons construit les cartes de précipitations mensuelles, du nombre d'heures d'éclairage solaire et des comptages annuels de sauterelles (dossiers de l'étude 8391) sur une période de 5 ans, et les avons comparées. Les méthodes d'aplanissement sont décrites. Nous avons construit les corrélogrammes de Moran I sur une distance afin d'estimer l'autocorrélation spatiale de l'abondance des sauterelles sur une échelle géographique. Les comptages de sauterelles ont été autocorrélés sur des distances de 20 à 30 km sur échelles de la plupart des cartes, et la relation entre les corrélogrammes et le tracé des cartes est expliqué. Les cartes «quotient» résultent de la division de chaque carte sur la densité de la population par la carte de l'année précédente. Puis les cartes «quotient» ont été mises en corrélation avec les cartes de précipitations mensuelles. Une relation significative est apparue entre les aires d'augmentation de la population de sauterelles et le niveau de précipitations. Les zones de déclin de la population ont tendance à coïncider avec les zones ayant un niveau de précipitations supérieur à la moyenne. Nous avons préparé et testé un modèle simple afin de produire une carte prévoyant le nombre de sauterelles à partir de la population de sauterelles de l'année précédente, des cartes de précipitations mensuelles et des heures d'éclairage solaire durant le mois d'août précédent.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: TYDAC Technologies, 1600 Carling Avenue, Suite 310, Ottawa, Ontario K1Z 8R7.

References

Bishop, Y.M.M., Fienberg, S.E., and Holland, P.W.. 1980. Discrete multivariate analysis: theory and practice. MIT Press, Cambridge, Massachusetts. 557 pp.Google Scholar
Cliff, A.D., and Ord, J.K.. 1981. Spatial processes models and applications. Pion Ltd., London. 266 pp.Google Scholar
Edwards, R.L. 1960. Relationship between grasshoper abundance and weather conditions in Saskatchewan, 1930–1958. Can. Ent. 92: 619624.Google Scholar
Edwards, R.L. 1962. A critical appraisal of grasshopper forecast maps in Saskatchewan, 1936–1958. J. econ. Ent. 55 (3): 288292.Google Scholar
Fisher, R.A., and Greenbank, D.O.. 1979. A case study of research into insect movement: spruce budworm in New Brunswick, pp. 220229in Rabb, R.L., and Kennedy, G.G. (Eds.), Movement of Highly Mobile Insects: Concepts and Methodology in Research. North Carolina State Univ., Raleigh.Google Scholar
Gage, S.H., and Mukerji, M.K.. 1977. A perspective of grasshopper population distribution in Saskatchewan and interrelationship with weather. Environ. Ent. 6 (3): 469479.Google Scholar
Grace, B., and Johnson, D.L.. 1985. The drought of 1984 in southern Alberta: its severity and effects. Can. Water Res. J. 10 (2): 2838.Google Scholar
Hardman, J.M., and Mukerji, M.K.. 1982. A model simulating the population dynamics of the grasshoppers (Acrididae) Melanoplus sanguinipes (Fabr.), M. packardii Scudder, and Camnula pellucida (Scudder). Res. Popul. Ecol. (Kyoto) 24 (2): 276301.Google Scholar
Hewitt, G.B., and Onsager, J.A.. 1982. A method of forecasting potential losses from grasshoppers feeding on northern mixed prairie forages. J. Range Manage. 35: 5357.Google Scholar
Hilbert, D.W., and Logan, J.A.. 1983. A simulation model of the migratory grasshopper (Melanoplus sanguinipes). pp. 323–334 in Lauenroth, W.K., Skogerboe, G.V., and Flug, M. (Eds.), Analysis of Ecological Systems: State-of-the-art in Ecological Modelling. Elsevier Scientific Publishing Co., Amsterdam, the Netherlands. 992 pp.Google Scholar
Hunter, G.M., and Steiglitz, K.. 1979. Operations on images using quad trees. I.E.E.E. Trans. Pattern Anal. Mach. Intell. PAMI 1: 145153.Google Scholar
MacCarthy, H.R. 1956. A ten-year study of the climatology of Melanoplus mexicanus mexicanus (Sauss.) (Orthoptera: Acrididae) in Saskatchewan. Can. J. Agric. Sci. 36: 445462.Google Scholar
Olfert, O.O., and Mukerji, M.K.. 1983. Effects of acute simulated and acute grasshopper (Orthoptera: Acrididae) damage on growth rates and yield of spring wheat (Triticum aestivum). Can. Ent. 115: 629636.Google Scholar
Pickford, R. 1970. The effects of climatic factors on egg survival and fecundity in grasshoppers, pp. 257260in Session: Population Studies II, Proc. Int. Study Conf. Current and Future Problems of Acridology, London.Google Scholar
Randell, R.L., and More, R.B.. 1974. Modelling: VI. Population dynamics of a species of grasshopper. Canadian Committee for the International Biological Programme, Matador Project, Tech. Rep. 59. 118 pp.Google Scholar
Riegert, P.W. 1968. A history of grasshopper abundance surveys and forecasts of outbreaks in Saskatchewan. Mem. ent. Soc. Can. 52: 199.Google Scholar
Samet, H. 1984. The quadtree and related hierarchical data structures. Computing Surveys 16: 187260.Google Scholar
SAS Institute. 1982. SAS user's guide: statistics. SAS Institute, Cary, NC.Google Scholar
Simmons, M., and Bitterlich, W.. 1986. Modelling the effects of acidic depositions on the sports fishery of eastern Canada. Application Res. Pap. 1, TYDAC TECHNOLOGIES INC., Ottawa, Ontario. 12 pp.Google Scholar
Smith, D.S., and Holmes, N.D.. 1977. The distribution and abundance of adult grasshoppers (Acrididae) in crops in Alberta, 1918–1975. Can. Ent. 109: 575592.Google Scholar
Sokal, R.R., and Oden, N.L.. 1978a. Spatial autocorrelation in biology 1. Methodology. Biol. J. Linn. Soc. 10: 199228.Google Scholar
Sokal, R.R., and Oden, N.L.. 1978b. Spatial autocorrelation in biology 2. Some biological implications and four applications of evolutionary and ecological interest. Biol. J. Linn. Soc. 10: 229249.Google Scholar
Strong, W.L., and Leggat, K.R.. 1981. Ecoregions of Alberta. Alberta Energy and Natural Resources, Tech. Rep. T/4. 64 pp.Google Scholar
Taylor, L.R. 1986. Synoptic dynamics, migration and the Rothamsted insect survey. J. Anim. Ecol. 55: 138.Google Scholar
WCCP (Western Committee on Crop Pests). 1987. Report. Western Committee on Crop Pests, Ottawa, Ont.137 pp.Google Scholar
Wellington, W.G. 1965. The use of cloud patterns to outline areas with different climates during population studies. Can. Ent. 97: 617631.Google Scholar
Wellington, W.G. 1977. Returning the insect to insect ecology: some consequences for pest management. Environ. Ent. 6: 17.Google Scholar