Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-15T14:47:35.487Z Has data issue: false hasContentIssue false

PHOTOTOXINS AS INSECTICIDES AND NATURAL PLANT DEFENCES

Published online by Cambridge University Press:  31 May 2012

Paul G. Fields
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
John T. Arnason
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
Bernard J.R. Philogène
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
Richard R. Aucoin
Affiliation:
Department of Biology, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
Peter Morand
Affiliation:
Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
Chantal Soucy-Breau
Affiliation:
Department of Chemistry, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5
Get access

Abstract

The thiophenes alpha-terthienyl and methyl-alpha-terthienyl are found in many species of the family Asteraceae and are highly phototoxic to mosquito larvae. These compounds and a synthetic analogue, cyano-alpha-terthienyl, controlled Aedes intrudens Dyar (Diptera: Culicidae) larvae at application rates between 10 and 40 g per hectare in field trials. These concentrations are similar to those currently used with chemical control agents. Piperonyl butoxide, a synergist used with pyrethrin, greatly increased the mortality of mosquito larvae at low application rates of the most potent phototoxin, cyano-alpha-terthienyl.Although we have demonstrated previously that these phototoxic defences are effective against some phytophagous insects, more recently we studied insects that are able to feed on a phototoxic plant, in order to examine modes of resistance to phototoxins. Chrysolina spp. (Coleoptera: Chrysomelidae) larvae are susceptible to phototoxicity but avoid it by feeding on Hypericum perforatum L. (Hypericaceae) at dawn and by hiding during the day. Chrysolina adults avoid phototoxicity by the presence of opaque cuticles that block the sunlight. First-instar larvae of Anaitis plagiata (L.) (Lepidoptera: Geometridae) avoid feeding on the glands that contain the phototoxin. Later-instar larvae feed on the entire leaf, yet are not susceptible to phototoxicity, indicating they have biochemical defenses against photo-induced damage.

Résumé

On trouve l'alpha-terthienyl et le méthyl-alpha-terthienyl dans plusieurs plantes de la famille des Astéracées. Ces deux thiophènes sont très toxiques envers les larves de moustique. Lors d'essais sur le terrain à des concentrations de 10 à 40 g per hectare, ces composés et un analogue synthétique, le cyano-alpha-terthienyl, ont contrôlé des larves d'Aedes intrudens Dyar (Diptera : Culicidae). Ces concentrations sont semblables à celles couramment utilisées avec les produits chimiques standards. Le pipéronyl butoxide, un synergiste utilisé avec la pyréthrine, des concentrations faibles de la phototoxine la plus active, le cyano-alpha-terthienyl, a beaucoup augmenté la mortalité des larvae de moustique.

Nous avons démontré auparavant que ces défenses phototoxiques sont efficaces contre certains insects herbivores, mais plus récemment nous avons étudié des insectes se nourrissant d'une plante phototoxique, dans le but d'examiner leurs modes de résistance aux phototoxines. Les larves de Chrysolina spp. (Coleoptera : Chrysomelidae) sont susceptibles à la phototoxicité mais y échappent en se nourrissant sur Hypericum perforatum L. (Hypercicae) à l'aube et en se cachant pendant la journée. Les adultes de Chrysolina évitent la phototoxicité grâce à leur cuticule opaque qui arrête la lumière solaire. Les larves du premier stade d'Anaitis plagiata (L.) (Lepidoptera : Geometridae) évitent les glandes qui contiennent la phototoxine. Les larves plus âgées se nourrissent de toute la feuille, sans être susceptibles à la phototoxicité, ce qui indique qu'elles possèdent des défenses biochimiques contre les dommages induits par la lumière.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Present address: Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9.

References

Arnason, J.T., Hebda, R.J., and Johns, T.. 1981. Use of plants for food and medicine by native peoples of eastern Canada. Can. J. Bot. 59: 21892325.Google Scholar
Arnason, J.T., Philogène, B.J.R., Berg, C., MacEachern, A., Kaminski, J., Leitch, L.C., Morand, P., and Lam, J.. 1986. Phototoxicity of naturally occurring and synthetic thiophene and acetylene analogues to mosquito larvae. Phytochemistry 25: 16091611.Google Scholar
Arnason, J.T., Philogène, B.J.R., Duval, F., Berg, C.W., Iyengar, S., and Morand, P.. 1988. Efficacy of formulation of the phototoxic insecticide alpha-terthienyl towards Aedes sp. Bioactive Molecules 7: 305314.Google Scholar
Arnason, J.T., Philogène, B.J.R., Morand, P., Imrie, K., Iyengar, S., Duval, F., Soucy-Breau, C., Scaiano, J.C., Werstiuk, N.H., Hasspieler, B., and Downe, A.E.R.. 1989. Naturally occurring and synthetic thiophenes as photoactivated insecticides, pp. 166172in Arnason, J.T., Philogène, B.J.R., and Morand, P. (Eds.), Insecticides of Plant Origin. ASC Symp. Ser. 387. American Chemical Society, Washington, DC.Google Scholar
Arnason, J.T., Philogène, B.J.R., Morand, P., Scaiano, J.C., Werstiuk, N., and Lam, J.. 1987. Thiophenes and acetylenes: Phototoxic agents to herbivorous and blood-feeding insects, pp. 255264in Heitz, J.R., and Downum, K.R. (Eds.), Light-activated Pesticides. ACS Symp. Ser. 339. American Chemical Society, Washington, DC.Google Scholar
Arnason, J.T., Swain, T., Wat, C.K., Graham, E.A., Partington, S., and Towers, G.H.N.. 1981. Mosquito larvicidal activity of polyacetylenes from species in the Asteraceae. Biochem. Syst. Ecol. 9: 6368.Google Scholar
Arnason, J.T., Towers, G.H.N., Philogène, B.J.R., and Lambert, J.D.H.. 1983. The role of natural photosensitizers in plant resistance to insects, pp. 139151in Hedin, P.A. (Ed.), Plant Resistance to Insects. ACS Symp. Ser. 208. American Chemical Society, Washington, DC.Google Scholar
Aucoin, R.R., Fields, P.G., Lewis, M.A., Philogène, B.J.R., and Arnason, J.T.. 1990. The protective effect of antioxidants to a phototoxin-sensitive insect herbivore, Manduca sexta. J. Chem. Ecol. 16: 29132923.Google Scholar
Berenbaum, M. 1987. Charge of the light brigade: Phototoxicity as a defense against insects, pp. 206216in Heitz, J.K., and Downum, K.R. (Eds.), Light-activated Pesticides. ACS Symp. Ser. 339. American Chemical Society, Washington, DC.Google Scholar
Berenbaum, M. 1990. Evolution of specialization in insect–unbellifer associations. A. Rev. Ent. 35: 319343.Google Scholar
Brattsten, L.B., and Ahmad, S.. 1986. Molecular Aspects of Insect–Plant Associations. Plenum Press, New York, NY. 346 pp.Google Scholar
Clark, L.R. 1953. The ecology of Chrysomela gemellata Rossi and C. hyperici Foist., and their effect on St. John's Wort in the Bright district, Victoria. Aust. J. Zool. 1: 169.Google Scholar
Downum, K.R., Keil, P.J., and Rodriguez, E.. 1985. Distribution of acetylenic thiophenes in the Pectidinae. Biochem. Syst. Ecol. 13: 109113.Google Scholar
Downum, K.R., and G.Towers, H.N.. 1983. Analysis of thiophenes in the tageteae (Asteraceae) by HPLC. J. Nat. Prod. 44: 98103.Google Scholar
Fields, P.G., Arnason, J.T., and Philogène, B.J.R.. 1989. Distribution of Chrysolina spp. (Coleoptera: Chrysomelidae) in eastern Ontario, 18 years after their initial release. Can. Ent. 120: 937938.Google Scholar
Fields, P.G., Arnason, J.T., and Philogène, B.J.R.. 1990. The behavioural and physical adaptations of three insects that feed on the phototoxic plant Hypericum perforatum. Can. J. Zool. 68: 339346.Google Scholar
Giese, A.C. 1980. Hypericism. pp. 229255in Smith, K.C. (Ed.), Photochemical and Photobiological Reviews. Vol. 5. Plenum Press, New York, NY.Google Scholar
Harris, P., Peschken, D., and Milroy, J.. 1969. The status of biological control of the weed Hypericum perforatum in British Columbia. Can. Ent. 101: 115.Google Scholar
Hasspieler, B., Arnason, J.T., and Downe, A.E.R.. 1988. Toxicity, localization and elimination of the phototoxin alpha-terthienyl in mosquito larvae. J. Am. Mosq. Control Assoc. 4: 479484.Google Scholar
Heitz, J.R. 1987. The development of photoactivated compounds as pesticides, pp. 1–21 in Heitz, J., and Downum, K.R. (Eds.), Light-activated Pesticides. ACS Symp. Ser. 339. American Chemical Society, Washington, DC.Google Scholar
Huffaker, C.B. 1957. Fundamentals of biological control of weeds. Hilgardia 27: 101157.Google Scholar
Iyengar, S., Arnason, J.T., Philogène, B.J.R., Morand, P., Werstiuk, M.H., and Timmins, G.. 1987. Toxicokinetics of the phototoxic allelochemical alpha-terthienyl in three herbivorous lepidoptera. Pest. Biochem. Physiol 29: 19.Google Scholar
Iyengar, S., Arnason, J.T., Philogène, B.J.R., Werstiuk, M.H., and Morand, P.. 1990. Comparative metabolism of the phototoxic alleochemical alpha-terthienyl in three species of Lepidoptera. Pest. Biochem. Physiol. 37: 145164.Google Scholar
Johansson, S. 1962. Insects associated with Hypericum L. 2. Lepidoptera, Diptera, Hymenoptera, Homoptera and general remarks. Opusc. Ent. 27: 175192.Google Scholar
Lee, K., and Berenbaum, M.R.. 1989. Action of antioxidant enzymes and cytochrome P-450 mono-oxygenases in cabbage looper in response to plant phototoxins. Arch. Insect Biochem. Physiol. 10: 151162.Google Scholar
Lemke, L.A., Koehler, P.G., Patterson, R.S., Feger, M.B., and Eickholff, T.. 1987. Field development of photo-oxidative dyes as insecticides, pp. 156167in Heitz, J., and Downum, K.R. (Eds.), Light-activated Pesticides. ACS Symp. Ser. 339. American Chemical Society, Washington, DC.Google Scholar
Lewis, H., and M.Elvin-Lewis, P.F.. 1977. Medical Botany: Plants Affecting Man's Health. John Wiley and Son, New York, NY. 305 pp.Google Scholar
Philogène, B.J.R., Arnason, J.T., Berg, C.W., Duval, F., Champagne, D., Tayor, R.G., Leitch, L.C., and Morand, P.. 1985. Synthesis and evaluation of the naturally occurring phototoxin, alpha-terthienyl, as a control agent for larvae of Aedes intrudens, Aedes atropalpus (Diptera: Culicidae) and Simulium verecundum (Diptera: Simulidae). J. econ. Ent. 78: 121126.Google Scholar
Rebeiz, C.A., Montazer-Zouhoor, A., Hopen, H.J., and Wu, S.M.. 1984. Photodynamic herbicides: Concept and phenomenology. Enzyme Microb. Technol. 6: 390401.Google Scholar
Rosenthal, G.A., and Janzen, D.H.. 1979. Herbivores: Their Interaction with Secondary Plant Metabolites. Academic Press, New York, NY. 718 pp.Google Scholar
Tallamy, D.W. 1986. Behavioural adaptations in insects to plant allelochemicals. pp. 273300in Brattsten, L.B., and Ahmad, S. (Eds.), Molecular Aspects of Insect–Plant Associations. Plenum Publishing, New York.Google Scholar
Towers, G.H.N. 1984. Interactions of light with phytochemicals in some natural and novel systems. Can. J. Bot. 62: 29002911.Google Scholar
Ware, G.W. 1978. Pesticides, Theory and Application. Freeman and Co., New York, NY. 308 pp.Google Scholar