Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-24T06:53:28.320Z Has data issue: false hasContentIssue false

Mathematical Models for use in Insect Pest Control

Published online by Cambridge University Press:  31 May 2012

Kenneth E. F. Watt*
Affiliation:
Statistical Research and Services,Research Branch, Ottawa, Canada
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Other
Copyright
Copyright © Entomological Society of Canada 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R. L., and Bancroft, T. A.. 1952. Statistical theory in research. McGraw-Hill, New York.Google Scholar
Andrewartha, H. G., and Birch, L. C.. 1954. The distribution and abundance of animals. University Chicago Press, Chicago.Google Scholar
Arrow, K. J., Hurwicz, L. and Uzawa, H.. 1958. Studies in linear and non-linear programming. Stanford U. Press.Google Scholar
Atwal, A. S. 1955. Influence of temperature, photoperiod, and food on the speed of development, longevity, fecundity, and other qualities of the diamond-back moth Plutella maculipennis (Curtis) (Lepidoptera: Tineidae). Aust. J. Zool. 3: 185221.Google Scholar
Bailey, N. T. J. 1950. A simple stochastic epidemic. Biometrika 37: 193202.Google Scholar
Bailey, N. T. J. 1957. The mathematical theory of epidemics. Hafner, New York.Google Scholar
Bailey, V. A. 1931. The interaction between hosts and parasites. Quart. J. Math. 2: 6877.Google Scholar
Bancroft, T. A., and Brindley, T. A.. 1958. Methods for estimation of size of corn borer populations. Proc. X Int. Congr. Entomology 2: 10031014.Google Scholar
Baranov, F. I. 1918. On the question of the biological basis of fisheries. Nauch. issledov. iktiol. inst. izv. 1: 81128.Google Scholar
Bartlett, M. S. 1949a. Some evolutionary and stochastic processes, J. Roy. Stat. Soc. Ser. B 11: 211229.Google Scholar
Bartlett, M. S. 1949b. Fitting a straight line when both variables are subject to error. Biometrics 5: 207212.Google Scholar
Bartlett, M. S. 1956. An introduction to stochastic processes with special reference to methods and applications. Cambridge U. Press.Google Scholar
Bartlett, M. S. 1957. On theoretical models for competitive and predatory biological systems. Biometrika 44: 2742.Google Scholar
Bellman, Richard 1957. Dynamic programming. Princeton U. Press, Princeton.Google Scholar
Bennett, C. A., and Franklin, N. L.. 1954. Statistical analysis in chemistry and the chemical industry. John Wiley and Sons, New York.Google Scholar
Berkson, J. 1958. Smoking and lung cancer: some observations on two recent reports. J. Amer. Stat. Ass. 53: 2838.Google Scholar
Beverton, R. J. H., and Holt, S. J.. 1957. On the dynamics of exploited fish populations. Fishery Investigations, Ser. II, Vol. XIX. Her Majesty's Stationery Office, London.Google Scholar
Birch, L. C. 1953. Experimental background to the study of the distribution and abundance of nsects. I. The influence of temperature, moisture and food on the innate capacity for increase of three grain beetles. Ecology 34: 698711.Google Scholar
Bishop, Y. M. M. 1959. Errors in estimates of mortality obtained from virtual populations. J. Fish. Res. Bd. Canada 16: 7390.Google Scholar
Box, G. E. P. 1954. The exploration and exploitation of response surfaces: some general considerations and examples. Biometrics 10: 1660.Google Scholar
Box, G. E. P., and Coutie, G. A.. 1956. Application of digital computers in the exploration of functional relationships. The Proceedings of the institution of electrical engineers Vol. 103, Part B Supplement No. 1.Google Scholar
Box, G. E. P., and Wilson, K. B.. 1951. On the experimental attainment of optimum conditions. J. R. Stat. Soc. B 13: 138.Google Scholar
Box, G. E. P., and Youle, P. V.. 1955. The exploration and exploitation of response surfaces: An example of the link between the fitted surface and the basic mechanism of the system. Biometrics 11: 287323.Google Scholar
Brown, A. W. A. 1958. Insecticide resistance in arthropods. World Health Organization, Geneva.Google Scholar
Burnett, Thomas. 1954. Influences of natural temperatures and controlled host densities on oviposition of an insect parasite. Physiological Zoology 3: 239248.Google Scholar
Thomas, Burnett. 1956. Effects of natural temperatures on oviposition of various numbers of an insect parasite (Hymenoptera, Chalcididae, Tenthredinidae). Annals Entomological Society of Amer. 1: 5559.Google Scholar
Chiang, C. L. 1954. Competition and other interactions between species. Statistics and Mathematics in Biology: 197215. Iowa State College Press, Ames.Google Scholar
Cragg, J. B., and Pirie, N. W.. 1955. The numbers of man and animals. Oliver and Boyd, Edinburgh and London.Google Scholar
d'Ancona, U. 1942. La lotta per l'esistenza. Giulio Einaudi, Torino, Italy.Google Scholar
Davis, D. S. 1955. Nomography and empirical equations. Reinhold, New York.Google Scholar
Deming, W.Edwards, . 1938. Statistical adjustment of data. Wiley, New York.Google Scholar
Dempster, J. P. 1957. The population dynamics of the Moroccan locust (Dociostanrus maroccanus Thunberg) in Cyprus. Anti-Locust Bulletin 27.Google Scholar
Dorfman, R., Samuelson, P. A. and Solow, P. A.. 1958. Linear programming and economic analysis. McGraw-Hill, N.Y.Google Scholar
Dowden, P. B., Jaynes, H. A. and Carolin, V. M.. 1953. The role of birds in a spruce bud-worm outbreak in Maine, J. Econ. Entomol. 46: 307312.Google Scholar
Dwight, H. B. 1947. Tables of integrals and other mathematical data. Macmillan, New York.Google Scholar
Elderton, W. P. 1938. Frequency curves and correlation. Cambridge University Press.Google Scholar
El-Sawaf, Saleh Kamel. 1956. Some factors affecting the longevity, oviposition, and rate of development in the Southern Cowpea Weevil Callosobruchus maculatus F. (Coleoptera: Bruchidae). Bull. Soc. Entomologique D'Egypte 40: 2995.Google Scholar
Ezekiel, M. 1941. Methods of correlation analysis. (2nd ed.) Wiley, New York.Google Scholar
Feller, W. 1940. On the logistic law of growth and its empirical verifications in biology. Acta. biotheoretica 5: 5166.Google Scholar
Feller, W. 1950. An introduction to probability theory and its applications. Wiley, New York.Google Scholar
Finney, D. J. 1953. An introduction to statistical science in agriculture. Oliver and Boyd, Edinburgh.Google Scholar
Fraser, D. A. S. 1958. Statistics: an introduction. Wiley, New York.Google Scholar
Fry, F. E. J. 1947. University of Toronto Studies. Biological series No. 55. Publications of the Ontario Fisheries Research Laboratory LXVIII. Effects of the environment on animal activity.Google Scholar
Fry, F. E. J., and Watt, K. E. F.. 1957. Yields of year classes of the smallmouth bass hatched in the decade of 1940 in Manitoulin Island waters. Trans. Am. Fish Soc. 85: 135143.Google Scholar
Gass, S. I. 1958. Linear programming: methods and applications. McGraw-Hill, New York.Google Scholar
Gause, G. F. 1934. The struggle for existence. Williams and Wilkins, Baltimore.Google Scholar
Gheury de Bray, M. E. J. 1928. Exponentials made easy. Macmillan and Co., Ltd., London.Google Scholar
Ghiselin, B. 1952. The creative process. U. California Press, Berkeley.Google Scholar
Goulden, C. H. 1952. Methods of statistical analysis. 2nd ed. John Wiley and Sons, New York.Google Scholar
Grumman, H. R. 1936. Some notes on exponential analysis. Ann. Math. Stat. 7: 133144.Google Scholar
Hadamard, J. 1945. The psychology of invention in the mathematical field. Princeton U. Press, Princeton N.J.Google Scholar
Hader, R. J., Harward, M. E., Mason, D. D. and Moore, D. P.. 1957. An investigation of some of the relationships between copper, iron and molybdenum in the growth and nutrition of lettuce: I. Experimental design and statistical methods for characterizing the response surface. Soil Science Soc. Amer. Proc. 21: 5964.Google Scholar
Hald, A. 1952. Statistical theory with engineering applications. John Wiley, New York.Google Scholar
Hamaker, H. C. 1955. Experimental design in industry. Biometrics 11: 257286.Google Scholar
Hansen, M. H., Hurwitz, W. N. and Madow, W. G.. 1953. Sample survey methods and theory. Vol. 1: Methods and applications. Wiley and Sons, New York.Google Scholar
Hartley, H. O. 1948. The estimation of non-linear parameters by internal least squares. Biometrlka 35: 3245.Google Scholar
Holling, C. S. 1959. Some characteristics of simple types of predation and parasitism. Can. Ent. 91: 385398.Google Scholar
Hotelling, H. 1927. Differential equations subject to error, and population estimates. J. Amer. Stat. Ass. 22: 283314.Google Scholar
Hueck, H. J., Kuenen, D. J., DenBoer, P. J. and Jaeger-Draafsel, E.. 1952. The increase of egg production of the fruit tree red spider mite (Metatetranychus ulmi Koch) under influence of DDT. Physiologia Comparata et Oecologia 2: 371377.Google Scholar
Ivlev, V. S. 1945. The biological productivity of waters. Uspekhi Sovremennoi Biologii 19: 98120.Google Scholar
Janisch, E. 1927. Das exponential gesetz als grundlage einer vergleichenden biologie. Julius Springer, Berlin.Google Scholar
Janisch, E. 1928. Die lebens-und entwicklungsdauer der insekten als temperaturfunktion. Z. wiss. zool. 132: 176186.Google Scholar
Janisch, E. 1932. The influence of temperature on the life-history of insects. Trans. Ent. Soc. London 80: 137168.Google Scholar
Johnson, F. H., Eyring, H. and Polissar, M. J.. 1954. The kinetic basis of molecular biology. Wiley, New York.Google Scholar
Johnson, L. H. 1952. Nomography and empirical equations. John Wiley and Sons, New York.Google Scholar
Kemeny, J. G., Snell, J. L. and Thompson, G. L.. 1957. Introduction to finite mathematics. Prentice-Hall, Inc., Englewood Cliffs, N.J.Google Scholar
Kendall, D. G. 1949. Stochastic processes and population growth, J. Roy. Stat. Soc. B 11: 230265.Google Scholar
Knutson, H. 1955. Modifications in fecundity and life span of Drosophila melanogaster Meigen following sublethal exposure to an insecticide. Annals Ent. Soc. Amer. 48: 3539.Google Scholar
Koopmans, T. C. 1951. Activity analysis of production and allocation. Wiley and Sons, N.Y.Google Scholar
Kostitzin, V. A. 1937. Biologie mathematique. Collection Armand ColinGoogle Scholar
Kramer, C. Y. 1957. Simplified computations for multiple regression. Ind. Qual. Cont. 13: 14.Google Scholar
Kuenen, D. J. 1958. Influence of sublethal doses of DDT upon the multiplication race of Sitophilus granarius (Coleopt. Curculion dae). Ent. Exp. Appl. 1: 1471552.Google Scholar
Kuhn, H. W., and Tucker, A. W.. 1951. Non-linear programming. U. California Press, Berkeley.Google Scholar
LeRoux, E. J., and Reimer, C.. 1959. Sampling variation of population and mortality factors of immature stages of the eye-spotted budmoth, Spilonota ocellana (D. and S.) (Lepidoptera: Olethreutidae), and the pistol casebearer, Coleophora malivorella Riley (Lepidoptera: Coleophoridae), on apple in Quebec. Can. Ent. 91: 428449.Google Scholar
Leslie, P. H. 1946. Population theories: A review of La lotta per l'esistenza by d'Ancona, U.. J. An. Ecol. 15: 107.Google Scholar
Leslie, P. H. 1957. An analysis of the data from some experiments carried out by Gause with populations of the Protozoa, Faramecium aurelia and Faramecium caudatum. Biometrika 44: 314327.Google Scholar
Leslie, P. H. 1958. A stochastic model for studying the properties of certain biological systems by numerical methods. Biometrika 45: 1631.Google Scholar
Lindley, D. V. 1947. Regression lines and the linear functional relationship. Roy. Stat. Soc. 9: 218244.Google Scholar
Lipka, Joseph. 1918. Graphical and mechanical computation. John Wiley and Sons, N.Y.Google Scholar
Lotka, Alfred J. 1925. Elements of physical biology. Williams and Wilkins Co., Baltimore.Google Scholar
Matsazawa, H., Okamoto, H. and Mizamoto, Y.. 1957. Application of Pradhan's formula to the data of development of the common cabbage butterfly, Fierls rapae crucivora, and its parasite, Apanteles glomeratus. Kontyu 25: 8993.Google Scholar
Menusan, H. 1934. Effects of temperature and humidity on the life processes of the bean weevil, Bruchus obtectus Say. Ann. Ent. Soc. Amer. 27: 515526.Google Scholar
Meyer, H. A. 1956. Symposium on Monte Carlo methods. Wiley, New York.Google Scholar
Miller, C. A. 1955. A technique for assessing spruce budworm larval mortality caused by parasites. Can. J. Zool. 33: 517.Google Scholar
Miller, C. A. 1957. A technique for estimating the fecundity of natural populations of the spruce budworm. Can. J. of Zoology 35: 113.Google Scholar
Miller, C. A. 1958. The measurement of spruce budworm populations and mortality during the first and second larval instars. Can. J. Zool. 36: 409422.Google Scholar
Moore, D. P., Harward, M. E., Mason, D. D., Hader, R. J., Lott, W. L. and Jackson, W. A.. 1957. An investigation of some of the relationships between copper, iron, and molybdenum in the growth and nutrit on of lettuce: II. Response surfaces of growth and accumulations of Cu and Fe. Soil Science Soc. Amer. Proc. 21: 6574.Google Scholar
Moran, P. A. P. 1959. The theory of some genetical effects of population subdivision. Aust. J. Biol. Sci. 12: 110116.Google Scholar
Morris, R. F. 1955. The development of sampling techniques for forest insect defoliators, with part cular reference to the spruce budworm. Can. J. Zool. 33: 225294.Google Scholar
Morris, R. F. 1957. The interpretation of mortality data in studies on population dynamics. Can. Ent. 2: 4969.Google Scholar
Morris, R. F. 1959. Single-factor analysis in population dynamics. Ecology. 40: 580588.Google Scholar
Morris, R. F. 1960. Sampling insect populations. Ann. Rev. Ent. 5: 243264.Google Scholar
Morris, R. F., and Miller, C. A.. 1954. The development of life tables for the spruce bud-worm. Can. J. Zool. 32: 283301.Google Scholar
Morris, R. F., Miller, C. A., Greenbank, D. O. and Mott, D. G.. 1958. The population dynamics of the spruce budworm in Eastern Canada. Proc. X Internat. Congr. Ent. 4: 137149.Google Scholar
Moser, H. 1958. The dynamics of bacterial populations maintained in the chemostat. Carnegie Inst. Washington Publ. 614, Washington, D.C.Google Scholar
Nair, K. R. 1954. The fitting of growth curves. Statistics and mathematics in biology: 119132. Iowa State Coll. Press, Ames.Google Scholar
Neyman, J., and Scott, E. L.. 1959. Stochastic models of population dynamics. Science 130: 303308.Google Scholar
Nicholson, A. J., and Bailey, V. A.. 1935. The balance of animal populations — part 1. Proc. Zool. Soc. London: 551598.Google Scholar
Nielsen, K. L. 1956. Methods in numerical analysis. Macmillan, New York.Google Scholar
Paloheimo, J. E. 1958. A method of estimating natural and fishing mortalities, j. Fish. Res. Bd. Canada 15: 749758.Google Scholar
Parke, N. G. 1958. Guide to the literature of mathematics and physics, including related works on engineering science. Dover Publications, New York.Google Scholar
Payne, N. M. 1933. The differential effect of environmental factors upon Microbracon hebetor Say (Hymenoptera: Braconidae) and its host Ephestia Kuhniella Zeller (Lepid-optera: Pyralidae). Biol. Bull. 65: 187205.Google Scholar
Poincare, Henri. 1910. The future of mathematics. Ann. Rept. Smithsonian Institutes 123140.Google Scholar
Pradhan, S. 1945. Insect population studies II. Rate of insect-development under variable temperature of the field. Proc. Nat. Inst. Sci. India 11: 7480.Google Scholar
Pradhan, S. 1946a. Insect population studies III. Idea of biograph and biometer. Proc. Nat. Inst. Sci. India 12: 301314.Google Scholar
Pradhan, S. 1946b. Insect population studies IV. Dynamics of temperature effect on insect development. Proc. Nat. Inst. Sci. India 12: 385404.Google Scholar
Pradhan, S., and Srivastata, H. M. L.. 1956. Increased activity of insects associated with increased pick-up of insecticide at higher temperatures. Indian J. Ent. 18: 7879.Google Scholar
Pringle, J. W. S. 1957. Insect flight. Cambridge University Press.Google Scholar
Pruthi, H. S. 1956a. Critical studies on insecticides I. Effect of temperature on the toxicity and comparative efficacy of some modern anti-locust insecticides. Indian J. Ent. 18: 273295.Google Scholar
Pruthi, H. S. 1956b. Critical studies on insecticides II. Toxicity of malathion under different conditions of temperature and humidity. Indian J. Ent. 18: 408426.Google Scholar
Quenouille, M. H. 1950. Introductory statistics. Butterworth-Springer Ltd., London.Google Scholar
Quenouille, M. H. 1952. Associated measurements. Butterworths Scientific Publications, London.Google Scholar
The Rand Corporation. 1955. A milion random digits with 100,000 normal deviates. The Free Press, Glencoe, Illinois.Google Scholar
Rashevsky, N. 1948. Mathematical biophysics. U. Chicago Press.Google Scholar
Ricker, W. E. 1958. Handbook of computations for biological statistics of fish populations. Bulletin 119, Fisheries Research Board of Canada.Google Scholar
Riemschne der, R. 1954. Configurations et action de certains insecticides. Examen stereochimique et toxicologique d'analogues du DDT. Chimie and industrie 72: 261270, 435–443.Google Scholar
Roeder, Kenneth D. 1953. Insect physiology. John Wiley, New York.Google Scholar
Running, T. R. 1917. Empirical formulas. John Wiley, New York.Google Scholar
Salt, R. W. 1950. Time as a factor in the freezing of undercooled insects. Can. J. Res. D. 28: 285291.Google Scholar
Salt, R. W., and James, H. G.. 1947. Low temperature as a factor in the mortality of eggs of Mantis religiosa. Can. Ent. 79: 3336.Google Scholar
Schaefer, M. B. 1957. A study of the dynamics of the fishery for yellowfin tuna in the eastern tropical Pacific Ocean. Inter-American Tropical Tuna Commission Bulletin 11: 247285.Google Scholar
Schmalhausen, I. I. 1949. Factors of evolution. Blakiston, Philadelphia.Google Scholar
Scriven, , Michael, . 1959. Explanation and predictions in evolutionary theory. Science 130: 477482.Google Scholar
Skellam, J. G. 1951. Random dispersal in theoretical populations. Biometrika 38: 196218.Google Scholar
Smith, F. D. 1952. Experimental methods in population dynamics: A critique. Ecology 33: 441450.Google Scholar
Smith, H. S., and DeBach, P.. 1942. The measurement of the effect of entomophagous insects on population densities of the host. J. Econ. Ent. 35: 845849.Google Scholar
Smith, R. W. 1958. Parasites of nymphal and adult grasshoppers (Orthoptera: Acrididae) in Western Canada. Can. J. Zool. 36: 217262.Google Scholar
Snedecor, G. W. 1956. Statistical methods. Iowa State Coll. Press, Ames, Iowa.Google Scholar
Sotavalta, O. 1947. The flight-tone (wing-stroke frequency) of insects. Acta Ent. Fenn. 4: 1117.Google Scholar
Olavi, Sotavalta. 1952. Flight-tone and wing-stroke frequency of insects and the dynamics of insect flight. Nature 170: 10571058.Google Scholar
Sotavalta, O. 1954. On the thoracic temperature of insects in flight. Ann. Zool. Soc. ‘Vanamo’ 16: 122.Google Scholar
Spencer, G. J. 1958. The natural control complex affecting grasshoppers in the dry belt of British Columbia. Proc. X Internal. Congr. Ent. 4: 497502.Google Scholar
Stanley, J. 1932. A mathematical theory of the growth of populations of the flour beetle, Tribolium confusum Duval. Can. J. Res. 6: 632671.Google Scholar
Steinhaus, Edward A. 1954. The effects of disease on insect populations. Hilgardia 23: 197261.Google Scholar
Stevens, W. L. 1951. Asymptotic regression. Biometrics 7: 247267.Google Scholar
Tahori, A. S. 1955. Diaryl-trifluoromethyl-carbinols as Synergists for DDT against DDT-resistant house flies, J. Econ. Ent. 48: 638642.Google Scholar
Thompson, W. R. 1924. La theorie mathematique de l'action des parasites entomophages et le facteur du hasard. Ann. Fac. Sci. Marseille 2: 6989.Google Scholar
Thompson, W. R. 1928. A contribution to the study of biological control and parasite introduction in continental areas. Parasitology 20: 90112.Google Scholar
Thompson, W. R. 1939. Biological control and the theories of the interactions of populations. Parasitology 31: 299388.Google Scholar
Tukey, J. W. 1949. One degree of freedom for non-additivity. Biometrics 5: 232242.Google Scholar
Ullyett, G. C. 1953. Biomathematics and insect population problems. A critical review. Memoirs Ent. Soc. Southern Africa 2: 189.Google Scholar
Vajda, S. 1956. The theory of games and linear programming. John Wiley, New York.Google Scholar
Vazsonyi, A. 1958. Scientific programming in business and industry. John Wiley and Sons, New York.Google Scholar
Volterra, V. 1926. Variazione e fluttuaziomi del numero d'individui in specie animali conviventi. Mem. Acad. Lincei 6: 31113.Google Scholar
Wallis, W. A., and Roberts, H. V.. 1956. Statistics: a new approach. The Free Press, Glencoe, Illinois.Google Scholar
Walsh, J. W. T. 1919. The resolution of a curve into a number of exponential components. Proc. Phys. Soc. London 32: 2630.Google Scholar
Watt, K. E. F. 1955. Studies on population productivity. I. Three approaches to the optimum yield problem in populations of Tribolium confusum. Ecol. Monogr. 25: 269290.Google Scholar
Watt, K. E. F. 1956. The choice and solution of mathematical models for predicting and maximizing the yield of a fishery. J. Fish. Res. Bd., Can. 13: 613645.Google Scholar
Watt, K. E. F. 1959a. A mathematical model for the effect of densities of attacked and attacking species on the number attacked. Can. Ent. 91: 129144.Google Scholar
Watt, K. E. F. 1959b. Studies on population productivity. II. Factors governing productivity in a population of smallmouth bass. Ecol. Monogr. 29: 367392.Google Scholar
Watt, K. E. F. 1960. The effect of population density on fecundity in insects. Can. Ent. 92.Google Scholar
Weiss, P., and Kavanau, J. L.. 1957. A model of growth and growth control in mathematical terms. J. Gen. Physiology 41: 147.Google Scholar
Wigglesworth, V. B. 1950. The principles of insect physiology. Methuen and Co., London.Google Scholar
Will, H. S. 1936. On a general solution for the parameters of any function with application to the theory of organic growth. Ann. Math. Stat. 7: 165190.Google Scholar
Wilson, E. B., and Puffer, R. R.. 1933. Least squares and laws of population growth. Proc. Amer. Acad. Arts and Sciences 68: 285382.Google Scholar
Wolcott, G. N. 1958. The evanescence of perfect biological control. Proc. X Int. Congr. Ent. 4: 511513.Google Scholar
Worthing, A. G., and Geffner, J.. 1943. Treatment of experimental data. John Wiley and Sons, Inc., N.Y.Google Scholar
Wright, R. H. 1958. The olfactory guidance of flying insects. Can. Ent. 90: 8189.Google Scholar
Wright, S. 1937. The distribution of gene frequencies in populations. Proc. Nat. Acad. Sc. 23: 307320.Google Scholar