Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-15T11:02:46.680Z Has data issue: false hasContentIssue false

Insect Lipids: A Review

Published online by Cambridge University Press:  31 May 2012

Paul G. Fast*
Affiliation:
Insect Pathology Research Institute, Department of Forestry, Sault Ste. Marie, Ontario
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Other
Copyright
Copyright © Entomological Society of Canada 1964

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agarwal, H. C. and Casida, J. E.. 1961. Nature of house fly sterols. Biochem. biophys. Res. Comm. 3: 508511.Google Scholar
Agarwal, H. C., Casida, J. E., and Beck, S. D.. 1961. An unusual sterol from house flies. J. Ins. Physiol. 7: 3245.Google Scholar
Agrell, I. 1953. The aerobic and anaerobic utilization of metabolic energy during insect metamorphosis. Acta Physiol. Scand. 28: 306335.Google Scholar
Albrecht, G. 1961. Untersuchungen über die chemische Zusammensetzung einiger Insektenfette. Z. vergl. Physiol. 44: 487508.Google Scholar
Anders, G. 1962. Paper Chromatographie determination of the higher, non-volatile fatty acids of Drosophila melanogaster. Rev. Suisse zool. 67: 171183.Google Scholar
Ascher, K. R. S. and Neri, I.. 1961. Lipoid content and resistance in the housefly Musca domestica L. Entomol. exp. appl. 4: 719.Google Scholar
Babcock, K. L., and Rutschky, C. W.. 1961. Lipids in insect eggs: a review with new evidence from the milkweed bug Oncopeltus fasciatus (Hemiptera, Lygaeidae). Ann. ent. Soc. Amer. 54: 156164.Google Scholar
Bachstez, M. and Aragon, A.. 1942. Notes on Mexican drugs. II. Characteristics and composition of the fatty oil from “Gusanos de maguey” (caterpillars of Acentrocneme hesperiaris). J. Amer. pharm. Assoc. 31: 145146.Google Scholar
Bade, M. L. 1962. Metabolic conversions during pupation of the cecropia silkworm. 2. Tests for the operation of the glyoxylate cycle. Biochem. J. 83: 478482.Google Scholar
Bade, M. L. and Wyatt, G. R.. 1962. Metabolic conversions during pupation of the cecropia silkworm. 1. Deposition and utilization of nutrient re erves. Biochem. J. 83: 470478.Google Scholar
Baker, G. et al. , 1960. Estimation of the composition of the cuticular wax of the mormon cricket Anabrus simplex Hald. J. Ins. Physiol. 5: 4760.Google Scholar
Baldwin, W. F. 1954. Acclimation and lethal high temperatures for a parasitic insect. Canad. J. Zool. 32: 157171.Google Scholar
Baldwin, W. F. and House, H. L.. 1954. Studies on the effects of thermal conditioning in two species of sawfly larvae. Canad. J. Zool. 32: 915.Google Scholar
Barlow, J. S. 1963. Fatty acids in some insect and spider fats. Canad. J. Biochem. In press.Google Scholar
Battista, G. W. 1954. Changes in the fat content of the japanese beetle (Popillia japonica Newman) during metamorphosis. J. N.Y. ent. Soc. 62: 2737.Google Scholar
Beali, G. 1948. The fat content of a butterfly Danaus plexippus Linn, as affected by migration. Ecology 29: 8094.Google Scholar
Beament, J. W. L. 1945. The cuticular lipoids of insects. J. exp. Biol. 21: 115131.Google Scholar
Beament, J. W. L. 1955. Wax secretion in the cockroach. J. exp. Biol. 32: 514538.Google Scholar
Beck, S. D. and Kapadia, A. G.. 1957. Insect nutrition and metabolism of sterols. Science 126: 258259.Google Scholar
Bergmann, E. D. and Levinson, Z. H.. 1958. Fate of beta-sitosterol in housefly larvae. Nature 182: 723724.Google Scholar
Bergmann, W. 1936. Fatty acids of chrysalis oil. J. biol. Chem. 114: 27.Google Scholar
Bergmann, W. 1938. The composition of ether extractives from exuviae of the silkworm Bombyx mori. Ann. ent. Soc. Amer. 31: 315321.Google Scholar
Berim, N. G. and Edelman, N. M.. 1949. Some physiological factors determining the stability of insects to dichlorodiphenyltrichloroethane (DDT) and hexachlorocyclohexane (HCH). Dokl. Ak. Nauk S.S.S.R. 67: 585588.Google Scholar
Beye, V., Kaeser, W. and Buchner, R.. 1961. On the effect of active substances of different insecticides on bees. Lipid content of bees after contact treatment and the effect on Drosophila in biotest. Anz. Schädlingsk. 34: 2628.Google Scholar
Bialaszewicz, K. 1937. Variations de la composition chimique des vers à soie pendant la dernière période de leur vie larvaire. Acta. Biol. exp. 11: 2042.Google Scholar
Bieber, L. L. et al. , 1961a. Phospholipid patterns in the blowfly, Phormia regina (Meigen). J. biol. Chem. 236: 25902595.Google Scholar
Bieber, L. L. et al. , 1961b. The isolation of methylcholine containing phospholipid from Phormia regina larvae. Biochem. biophys. Res. Comm. 6: 237240.Google Scholar
Blacklith, R. E. and Howden, G. F.. 1961. Food reserves of hatchling locusts. Comp. Biochem. Physiol. 3: 108124.Google Scholar
Bloch, K. 1960. Lipid metabolism. John Wiley and Sons, New York.Google Scholar
Bradbury, F. R., Campbell, A. and O'Carroll, F. M.. 1958. The waxes and lipoids of resistant houseflies and mosquitoes (Musca domestica and A. gambiae). Indian J. Malar. 12: 347582.Google Scholar
Brazzel, J. R. et al. , 1957. The effect of food on fat accumulation of resistant and susceptible boll weevils. J. econ. Ent. 50: 459462.Google Scholar
Bridges, R. G. and Cox, J. T.. 1959. Resistance of houseflies to benzene hexachloride and dieldrin. Nature 184: 17401741.Google Scholar
Brookes, V. J. and Fraenkel, G.. 1958. The nutrition of the larva of the housefly Musca domestica L. Physiol. Zool. 31: 208223.Google Scholar
Brown, A. W. A. 1959. Report on a visit to eastern European countries Unpublished working document. WHO/Insecticides/99.Google Scholar
Busnel, R. G. 1937. Étude biochimique des lipoides et des substances rductrices chez le Leptinotarsa decemlineata Say. C.R. Acad. Sci., Paris 205: 11771179.Google Scholar
Busnel, R. G. and Drilhon, A.. 1937. Études biochimique des Leptinotarsa decemlineata pendant l'hivernation. C.R. Soc. Biol., Paris 124: 916917.Google Scholar
Buxton, P. A. 1935. Changes in the composition of Culex pipieus during hibernation. Parasitology 27: 263265.Google Scholar
Casida, J. E., Beck, S. D. and Cole, M. J.. 1957. Sterol metabolism in the american cockroach. J. biol. Chem. 224: 365371.Google Scholar
Cervenkova, E. 1961. The metabolism of the cockroach Periplaneta americana during starvation. Csl. Společ. Zool. Vestn. 24: 183193.Google Scholar
Cherry, L. M. 1959. Fat metabolism and temperature acclimatization in the fly Phormia terraenovae R.-D. Ent. exp. appl. 2: 6876.Google Scholar
Chibnall, A. C. et al. , 1934. The constitution of the primary alcohols, fatty acids, and paraffins present in plant and insect waxes. Biochem. J. 28: 21892219.Google Scholar
Chojnacki, T. 1961. Biosynthesis of phospholipids in insects. II. Studies on incorporation of 32P orthophosphate in Celerio euphorbiae moths. Acta biochim. polon. 8: 167175.Google Scholar
Chojnacki, T. and Piechowska, M. J.. 1961. Biosynthesis of phospholipids in insects. 1. Incorporation of 32P-phosphocholine into phospholipids of Celerio euphorbiae. Acta biochim. polon. 8: 157165.Google Scholar
Clark, E. W. and Chadbourne, D. S.. 1962. A comparative study of the weight, and lipid and water content of the pink bollworm. Ann. ent. Soc. Amer. 55: 225228.Google Scholar
Clarke, A. J. and Bloch, K.. 1959a. The absence of sterol biosynthesis in insects. J. biol. Chem. 234: 25782582.Google Scholar
Clarke, A. J. and Bloch, K.. 1959b. Function of sterols in Dermestes vulpinus. J. biol. Chem. 234: 25832588.Google Scholar
Clarke, A. J. and Bloch, K.. 1959c. Conversion of ergosterol to 22-dehydrocholesterol in Blattella germanica. J. biol. Chem. 234: 25892594.Google Scholar
Clayton, R. B. 1960. The role of intestinal symbionts in the sterol metabolism of Blattella germanica. J. biol. Chem. 235: 34213425.Google Scholar
Clayton, R. B. and Edwards, A. M.. 1961. The essential cholesterol requirement of the roach Eurycotis floridana. Biochem. Biophys. Res. Comm. 4: 281284.Google Scholar
Clayton, R. B., Edwards, A. M. and Bloch, K.. 1962. Biosynthesis of cholesterol in an insect, silverfuh (Ctenolepisma sp.). Nature 195: 11251126.Google Scholar
Clements, A. N. 1959. Studies on the metabolism of locust fat body. J. exp. Biol. 36: 665675.Google Scholar
Cockbain, A. J. 1961. Fuel utilization and duration of tethered flight in Aphis fabae Scop. J. exp. Biol. 38: 163174.Google Scholar
Collins, G. 1933. Fatty acids from the larva-fat of the beetle Pachymerus bactris L. Biochem. J. 27: 13731374.Google Scholar
Cook, W. C. 1944. Studies on the vitality of the beet leafhopper during fall and winter in California as related to the fat content of the insects. Ecology 25: 327340.Google Scholar
Courtois, A. 1929. Sur la faible teneur en cholesterol des matières grasses des chrysalides de Lepidoptères. C.R. Acad. Sci., Paris 188: 666668.Google Scholar
Dadd, R. H. 1960. The nutritional requirements of locusts— 1 Development of synthetic diets and lipid requirements. J. Ins. Physiol. 4: 319347.Google Scholar
Dadd, R. H. 1961. The nutritional requirements of locusts— V Observations on essential fatty acids, chlorophyll, nutritional salt mixtures and proteins or amino acid components of synthetic diets. J. Ins. Physiol. 6: 126145.Google Scholar
Demainovsky, S. Y. and Zubova, V. A.. 1956. Fats of the silkworm Antheraea pernyi. Biochimia 21: 676682.Google Scholar
Ditman, L. P. 1938. Metabolism in the corn ear worm. 1. Studies on fat and water. Bull. Univ. Md. Agric. Exp. Sta. 414: 183206.Google Scholar
Doby, J. M., Deblock, S. and Gaeremynck, L.. 1956. Régime alimentaire et sensibilité des larves d'Aedes aegypti au DDT. Influence du taux des lipids de l'organisme. Bull. Soc. pat. exot. 49: 5664.Google Scholar
Eckart, A. 1949. Die Nervenbahn als Trägerin der DDT-vergiftung. Arch. exp. Path. Pharmacol. 207: 334351.Google Scholar
Evans, A. C. 1932. Some aspects of chemical changes during insect metamorphosis. J. exp. Biol. 9: 314321.Google Scholar
Evans, A. C. 1934. On the chemical changes associated with metamorphosis in a beetle (Tenebrioa molitor L.). J. exp. Biol. 11: 397401.Google Scholar
Fast, P. G. and Brown, A. W. A.. 1962. Lipids of DDT-resistant and susceptible larvae of Aedes aegypti. Ann. ent. Soc. Amer. 55: 663672.Google Scholar
Fawzi, M., Osman, H. and Schmidt, G. H.. 1961. Analyse der Körperfette von imagenalen Wanderheuschrecken der Art Locusta migratoria migratorioides L. (Orth.). Biochem. Z. 334: 441450.Google Scholar
Finkel, A. J. 1948. The lipid composition of Tenebria molitor larvae. Physiol. Zool. 21: 111133.Google Scholar
Fisk, F. W. 1958. Toxicity of BHC in milk to house flies as related to butter fat content of the milk. J. econ. Ent. 51: 560561.Google Scholar
Folch, J., Lees, M. and Stanley, G. H. S.. 1957. A simple method for the isolation and purification of total lipids from animal tissues. J. biol. Chem. 226: 497509.Google Scholar
Fraenkel, G. and Blewett, M.. 1946. Linoleic acid, vitamin E, and other fat-soluble substances in the nutrition of certain insects, (Ephestia kuehniella, E. elutella, E. cautella and Plodia interpunctella (Lep.)). J. exp. Biol. 22: 172190.Google Scholar
Fraenkel, G. and Blewett, M.. 1947. Linoleic acid and arachidonic acid in the metabolism of two insects Ephestia kuehniella (Lep.) and Tenebrie molitor (Col.). Biochem. J. 41: 475478.Google Scholar
Fraenkel, G., and Hopf, H. S.. 1940. The physiological action of abnormally high temperatures on poikilothermic animals. I. Temperature adaption and the degree of saturation of the phosphatides. Biochem. J. 34: 10851092.Google Scholar
Frew, J. G. H. 1929. Studies in the metabolism of insect metamorphosis. Brit. J. exp. Biol. 6: 205218.Google Scholar
Fulton, R. A. and Chamberlin, J. C.. 1934. An improved technique for the artificial feeding of the beet leafhopper with notes on its ability to synthesize glycerides. Science (N.S.) 79: 346348.Google Scholar
Fulton, R. A. and Romney, V. E.. 1940. The chloroform soluble components of beet leafhoppers as an indication of the distance they move in the spring. J. agr. Res. 61: 737743.Google Scholar
George, J. C. and Eapen, J.. 1959. Lipase activity in the fat body of the desert locust. Schistocerca gregaria. J. cell. Physiol. 54: 293295.Google Scholar
Gilbert, L. I. and Schneiderman, H. A.. 1961. The content of juvenile hormone and lipid in Lepidoptera: Sexual differences and developmental changes. Gen. Comp. Endocrin. 1: 453472.Google Scholar
Gilby, A. R. and Alexander, A. E.. 1957. Studies on the cuticular lipids of arthropods. I. The influence of biological factors on the composition of the wax from Ceroplastes destructor. Arch. Biochem. Biophys. 67: 302306.Google Scholar
Gilby, A. R. 1962. Absence of natural volatile solvents in cockroach grease. Nature 195: 729.Google Scholar
Giral, F. 1946. Fats of insects V. Sphenarium purpurescens Charpentier. J. biol. Chem. 162: 6163.Google Scholar
Giral, J., Giral, F. and Giral, M. L.. 1946. Fats of Insects IV. Composition of the fat of Melanoplus atlanis Riley. J. biol. Chem. 162: 5559.Google Scholar
Gordon, H. T. 1959. Minimal nutritional requirements of the German roach Blattella germanica L. Ann. N.Y. Acad. Sci. 77: 290351.Google Scholar
Green, D. E. and Lester, R. L.. 1959. The role of lipids in mitochondrial metabolism. Fed. Proc. 18: 987999.Google Scholar
Grindley, D. N. 1952. The composition of the body fat of small green chironomids. J. exp. Biol. 29: 440444.Google Scholar
Grison, P. 1948. Action des lecithines sur la fécundité du Doryphora. C.R. Acad. Sci., Paris 227: 11721174.Google Scholar
Hack, M. H., Gussin, A. E. and Lowe, M. E.. 1962. Comparative lipid biochemistry. 1. Phosphatides of invertebrates (Porifera to Chordata). Comp. Biochem. Physiol. 5: 217221.Google Scholar
Hackman, R. H. 1951. The chemical composition of the wax of the white scale Ceroplastes destructor (Newstead). Arch. Biochem. Biophys. 33: 150154.Google Scholar
Hastings, E. and Pepper, J. H.. 1944. The fatty materials in diapausing coddling moth (Carpocapsa pomonella L.) Arch. Biochem. 4: 8996.Google Scholar
Haub, J. G. and Hitchcock, F. A.. 1941. The interconversion of foodstuffs in the blowfly (Phormia regina) during metamorphosis III. Chemical composition of larvae, pupae and adults. Ann. ent. Soc. Amer. 34: 3237.Google Scholar
Heller, J. 1926. Chemische Untersuchungen über die Metamorphose der Insekten. IV. Mitteilung: Spinner und Schwärmer. V. Mitteilung: Über den Hungerstoffwechsel der Schmetterlinge. Biochem. Z. 172: 5973, 74–81.Google Scholar
Hendler, R. W. 1959. Passage of radioactive amino acids through “nonprotein” fractions of the hen oviduct during incorporation into protein. J. biol. Chem. 234: 14661473.Google Scholar
Herodek, S. and Farkas, T.. 1960. Changes in the composition of fatty acids in Bombyx mori L. in the course of ontogeny. Maq. Tud. Akad. Tihanyi Biol. Kutatoint. Evkonyve 27: 914.Google Scholar
Heslop, J. P. and Ray, J. W.. 1961. Nucleotides and other phosphorus compounds of cockroach nerve. Nature 190: 11921193.Google Scholar
Hilditch, T. P. 1956. The chemical constitution of natural fats. 3rd edition, rev. John Wiley and Sons, New York.Google Scholar
Hobson, R. P. 1935. On a fat soluble growth factor required by blowfly larvae II. Identity of the growth factor with cholesterol. Biochem. J. 29: 20232026.Google Scholar
Hokin, M. R. and Hokin, L. E.. 1961. The role of phosphatidic acid in transmembrane transport. Lab. Invest. 10: 11511161.Google Scholar
Hopf, H. S. 1940. The physiological action of abnormally high temperatures on poikilothermic animals. 3. Some changes occurring in phosphorus distribution of the haemolymph of insects under the influence of abnormally high temperature. Biochem. J. 34: 13961403.Google Scholar
House, H. L. and Barlow, J. S.. 1961. Effects of oleic and other fatty acids on the growth rate of Agria affinis (Fall) (Diptera: Sarcophagidae). J. Nutr. 72: 409414.Google Scholar
House, H. L., Riordan, D. F. and Barlow, J. S.. 1958. Effects of thermal conditioning and of degree of saturation of dietary lipids on resistance of an insect to a high temperature. Canad. J. Zool. 36: 629632.Google Scholar
Hukusima, S. and Machino, I.. 1959. The water and fat contents during larval and pupal growth in the peach fruit moth (Ecological studies on the peach fruit moth, Carposina niponensis Walsingham VI). Gifu Univ. Facul. Agric. Res. Bull. 11: 7885.Google Scholar
Hurst, H. 1949. Reversible action of DDT. Nature 163: 286–7.Google Scholar
Ikemoto, H. 1958. Seasonal variations of water and lipid contents of a leaf beetle Aulacophora fumolaris Motschulsky. Jap. J. appl. Ent. Zool. 2: 119122.Google Scholar
Ito, T. 1960. An artificial diet for the silkworm, Bombyx mori and the effect of soybean oil on its growth. Proc. XI int. Congr. Ent. Vienna 3 (pt. 2): 157162.Google Scholar
Ito, T., Shigamatzu, H. and Horie, Y.. 1958. The physiology in the metamorphosis of Bombyx mori. III. Phosphorus compounds during pupal development. Nippon Sanshigaku Z. 27: 217222.Google Scholar
Iyer, B. H. and Ramaswami Ayyar, P.. 1931. The fatty acids from oil of cantharis (Mylabris pustulata Fb India). J. Indian hist. Sci. 14 A: 4045.Google Scholar
Jackson, C. H. N. 1937. Water and fat content of tsetse flies. Nature 139: 674675.Google Scholar
Janot, M. M. and Faudemay, P.. 1937. Les lipides de la cantharide de “Russie” (Lytta vesicatoria). Bull. Soc. chim. Fr. 4: 11491151.Google Scholar
Kalina, B. F. 1950. Development and viability of Drosophila melanogaster on a medium containing DDT. Science 111: 3940.Google Scholar
Kaplanis, J. N., Robbins, W. E. and Tabor, L. A.. 1960. The utilization and metabolism of 4-C14-cholesterol by the adult house fly. Ann. ent. Soc. Amer. 53: 260264.Google Scholar
Kaplanis, J. N., Dutky, R. C. and Robbins, W. E.. 1961. The incorporation of 2-C14-mevalonate into housefly lipids. Ann. ent. Soc. Amer. 54: 114116.Google Scholar
Khan, S. A., Bhatty, M. K. and Karimullah, . 1961. Studies on Trombidium tinctorum Linn. 1. Chemical constitution of the fat of T. tinctorum Linn. Pakist. J. Sci. industr. Res. 3: 69.Google Scholar
Kirimura, J., Saito, M. and Kobayashi, M.. 1962. Steroid hormone in an insect. Bombyx mori. Nature 195: 729730.Google Scholar
Kiyoku, M. 1953. Considerations on the heat resistance of the bean weevil (Callosobruchus chinensis) reared under various conditions of environment. Botyu-Kagaku 18: 193200.Google Scholar
Kodicek, E. and Levinson, Z. H.. 1960. Metabolism of β-sitosterol and other lipids in the presence of acetate-2-14C by blowfly larvae. Nature 188: 10231025.Google Scholar
Kozhantshikov, I. W. 1938a. Carbohydrate and fat metabolism in adult Eepidoptera. Bull. ent. Res. 29: 103114.Google Scholar
Kozhantshikov, I. W. 1938b. Physiological conditions of cold hardiness in insects. Bull. ent. Res. 29: 253262.Google Scholar
Krogh, A. and Weis-Fogh, T.. 1951. Respiratory exchange of the desert locust (Schistocerca gregaria) before, during and after flight. J. exp. Biol. 28: 344357.Google Scholar
Landa, V., Novak, K. and Skuhravy, V., (1952). Der Einfluss der Insectizidc DDT und HCH auf den Imago des Maikäfers im Laboratorium. Folia zool. ent. 1(15): 171177.Google Scholar
Langenbuch, R. 1955. Untersuchungen über die Ursache der unterschiedlichen DDT-Empfindlichkeit der L3 und L4-Larven des Kartoffelkäfers Leptinotarsa decemlineata (Say). Z. Pflkrankh. 62: 564572.Google Scholar
Lees, A. D. and Beament, J. W. L.. 1948. An egg-waxing organ in ticks. Quart. J. microscop. Sci. 89: 291332.Google Scholar
Levenbook, L. 1953. The variation in phosphorus compounds during metamorphosis of the blow-fly, Calliphora erythrocephala Meig. J. cell. comp. Physiol. 41: 313334.Google Scholar
Levinson, Z. H. 1962. The function of dietary sterols in phytophagous insects. J. Ins. Physiol. 8: 191198.Google Scholar
Levinron, Z. H. and Bergmann, E. D.. 1957. Steroid utilization and fatty acid synthesis by the larva of the housefly Musca vicina Macq. Biochem. J. 65: 254260.Google Scholar
Levinson, Z. H. and Silverman, P. H.. 1954. Studies on the lipids of Musca vicina (Macq.) during growth and metamorphosis. Biochem. J. 58: 294297.Google Scholar
Lofgren, C. S. and Cutkomp, L. K.. 1956. Toxicity of DDT to the American cockroach when lipid content and temperature is varied. J. econ. Ent. 49: 167171.Google Scholar
Louloudes, S. J. et al. , 1961. Lipogenesis from C14-acetate by the American cockroach. Ann. ent. Soc. Amer. 54: 99103.Google Scholar
Louloudes, S. J. et al. , 1962. The hydrocarbons of adult houseflies. Ann. ent. Soc. Amer. 55: 442448.Google Scholar
Ludwig, D. and Rothstein, F.. 1949. Changes in the carbohydrate and fat content of the Japanese beetle Popillia japonica (Newman) during metamorphosis. Physiol. Zool. 22: 308317.Google Scholar
McCay, C. M. 1938. The nutritional requirements of Blattella germanica. Physiol. Zool. 11: 89103.Google Scholar
McGovern, J. F. 1949. Effect of milk on the toxicity of chlorinated insecticides to mosquito larvae. 2nd Quarterly Report. U.S.D.A. Orlando Laboratory.Google Scholar
Marcuzzi, G. 1960. Osservazioni sui grassi degli Insetti. R.C. Accad. Lincei 28: 497501.Google Scholar
Matsubara, H. 1960. Studies on the sexual difference of susceptibility of the insect against insecticides. L. On the sexual difference of characteristics of housefly lipids. Botyu Kagaku 25: 138143.Google Scholar
Matthée, J. J. 1945. Biochemical differences between the solitary and gregarious phases of locusts and noctuids. Bull. ent. Res. 36: 343371.Google Scholar
Melampy, R. M. and Maynard, L. A.. 1937. Nutrition studies with the cockroach Blattella germanica. Physiol. Zool. 10: 3644.Google Scholar
Melampy, R. M., Willis, E. R. and McGregor, S. E.. 1940. Biochemical aspects of the differentiation of the female honeybee Apis mellifera (L.). Physiol. Zool. 13: 283293.Google Scholar
Mellanby, K. 1954. Acclimatization and the thermal death point in insects. Nature 173: 582583.Google Scholar
Mer, G. F. and Furmanska, W.. 1953. The effect of the fat content in the fly food on the resistance to DDT. Riv. Parassit. 14: 4954.Google Scholar
Meyer, H., Preiss, B. and Bauer, S.. 1960. The oxidation of fatty acids by a particulate fraction from de ert-locust (Schistocerca gregaria) thorax tissues. Biochem. J. 76: 2735.Google Scholar
Micks, D. W. and Singh, K. R. P.. 1958. Infra-red spectra of acetone extracts of susceptible and insecticide resistant strains of houseflies. Tex. Rep. Biol. Med. 16: 355362.Google Scholar
Monroe, R. E. 1959. Role of cholesterol in house fly reproduction. Nature 184: 1513.Google Scholar
Monroe, R. E., Kaplanis, J. N. and Robbins, W. E.. 1961. Sterol storage and reproduction in the house fly. Ann. ent. Soc. Amer. 54: 537539.Google Scholar
Moran, M. R. 1959. Changes in the fat content during metamorphosis of the mealworm Tenebrio molitor Linnaeus. J. N.Y. ent. Soc. 67: 213216.Google Scholar
Munson, S. C. 1953a. Some effects of storage at different temperatures on the lipids of the American roach and on the resistance of this insect to heat. J. econ. Ent. 46: 657666.Google Scholar
Munson, S. C. 1953b. Some effects of storage at different temperatures on the resistance of the American cockroach to DDT. J. econ. Ent. 46: 754760.Google Scholar
Munson, S. C. and Gottlieb, M. I.. 1953. The differences between male and female American roaches in total lipid content and in susceptibility to DDT. J. econ. Ent. 46: 798802.Google Scholar
Munson, S. C., Padilla, G. M. and Weissman, M. L.. 1954. Insect lipids and insecticidal action. J. econ. Ent. 47: 578587.Google Scholar
Nagasawa, S. 1952. On the difference in resistability of adult female and male of the common housefly Musca domestica L. against DDT. Studies on the biological assay of insecticides XXIII. Botyu-Kagaku 17: 123133.Google Scholar
Naidu, M. B. 1959. Role of lipids in the susceptibility of an insect to insecticides. Indian J. Ent. 21: 105110.Google Scholar
Neri, I., Ascher, K. R. S. and Mosna, E.. 1958. Studies on insecticides resistant Anophelines. 3. Preliminary report on lipoid content in some strains of A. atroparvus. Indian J. Malar. 12: 565570.Google Scholar
Neri, I., Ascher, K. R. S. and Mosna, E.. 1959. Studies on insecticides resistant Anophelines 5. Lipoid content of female Anopheles atroparvus. Unpublished working document. WHO/Malo249 and WHO/Insecticides/105.Google Scholar
Niemierko, W. 1947a. Fatty acid metabolism in silkworm larvae. Acta Biol. exp. 14: 137150.Google Scholar
Niemierko, W. 1947b. Contribution to the biochemistry of metamorphosis of silkworm. Acta Biol. exp. 14: 151155.Google Scholar
Niemierko, W. 1959. Some aspects of lipid metabolism in insects, pp. 185200. Proc. intern. Congr. Biochem. 4th Congr. Vienna, 1958. XII. Levenbook, L. (ed.), Insect Biochemistry. Pergamon Press, New York.Google Scholar
Niemierko, W. and Cepelewicz, S.. 1950. Studies in the biochemistry of the waxmoth Galleria mellonella. I. Growth of the larvae and their chemical composition. Acta Biol. exp. 15: 5768.Google Scholar
Niemierko, S., Wlodawer, P. and Woztczak, A. F.. 1956. Lipid and phosphorus metabolism during growth of the silkworm (Bombyx mori L.). Act. Biol. exp. 17: 255276.Google Scholar
Noland, J. L. 1954. Sterol metabolism in insects. I. Utilization of cholesterol derivatives by the cockroach Blattella germanica (L.). Arch. Biochem. Biophys. 48: 370379.Google Scholar
Patterson, E. K., Dum, M. E. and Richards, A. G. Jr., 1945. Lipids in the central nervous system of the honeybee. Arch. Biochem. 7: 201210.Google Scholar
Patton, M. B., Hitchcock, F. A. and Haub, J. G.. 1941. The interconversion of foodstuffs in the blowfly (Phormia regina) during metamorphosis II. Changes in composition as determined by the oxycalorimeter. Ann. ent. Soc. Amer. 34: 2631.Google Scholar
Pearincott, J. V. 1960. Changes in lipid content during growth and metamorphosis of the housefly Musca domestica Linnaeus. J. cell. comp. Physiol. 55: 167174.Google Scholar
Pepper, J. H. and Hastings, E.. 1943. Biochemical studies on the sugar beet webworm Loxostege sticticalis L., with special reference to the fatty acids and their relation to diapause and sterility. Bull. Mont, agrie. Exp. Sta. 413.Google Scholar
Perry, A. S. 1960. Investigations on the mechanism of DDT resistance in certain anopheline mosquitoes. Bull. Wld. Hlth. Org. 22: 743756.Google Scholar
Pfeiffer, I. W. 1945. Effect of corpora allata on the metabolism of adult female grasshoppers. J. exp. Zool. 99: 183233.Google Scholar
Pieck, T. 1961. Synthesis of wax in the honeybee (Apis mellifera L.). Koninkl. Ned. Akad. Wetenschap. Proc. Ser. C. 64: 648654.Google Scholar
Pradhan, S., Nair, M. R. G. K. and Krishnaswami, S.. 1952. Lipoid solubility as a factor in the toxicity of contact insecticides. Nature 170: 619620.Google Scholar
Rainey, R. C. 1938. On the changes in chemical composition associated with larval development in sheep blowfly. Ann. appl. Biol. 25: 822835.Google Scholar
Reiff, M. and Beye, F.. 1960. Stoffwechselvorgänge bei sensiblen und resistenten Fliegen unter Einfluss der DDT-sub tanz (Grundlagen zur Resistenzforschung, 10 Mitteilung). Acta trop. Basel 17: 147.Google Scholar
Reiser, R. et al. , 1953. Variations in lipid content of the boll weevil and seasonal variation in its resistance to insecticides. J. econ. Ent. 46: 337340.Google Scholar
Richards, A. G., Jr. 1943. Lipid nerve sheaths in insects and their probable relation to insecticide action. J. N.Y. ent. Soc. 51: 5569.Google Scholar
Richards, A. G., Jr. and Cutkomp, L. K.. 1945. Neuropathology in insects. J. N.Y. ent. Soc. 53: 313355.Google Scholar
Richards, A. G. Jr., and Weygandt, J. L.. 1945. The selective penetration of fat solvents into the nervous system of mosquito larvae. J. N.Y. ent. Soc. 53: 153165.Google Scholar
Ritchot, C. and MacFarlane, J. E.. 1962. The effects of wheat germ oil and linoleic acid on growth and reproduction of the house cricket. Canad. J. Zool. 40: 371374.Google Scholar
Robbins, W. E. et al. , 1962. The metabolism of H3-β-sitosterol by the german cockroach. Ann. ent. Soc. Amer. 55: 102104.Google Scholar
Robbins, W. E. et al. , 1960. Utilization of l-C14-acetate in lipid synthesis by adult house flies. Ann. ent. Soc. Amer. 53: 128129.Google Scholar
Robbins, W. E. et al. , 1961. The utilization of dietary cholesterol by german roaches. Ann. ent. Soc. Amer. 54: 165168.Google Scholar
Robbins, W. E. and Shortino, T. J.. 1962. Effect of cholesterol in the larval diet on ovarian development in the adult house-fly. Nature 194: 502503.Google Scholar
Roeder, K. D. and Weiant, E. A.. 1951. The effect of concentration, temperature and washing on the time of appearance of DDT induced trains in sensory fibers of the cockroach. Ann. ent. Soc. Amer. 44: 372380.Google Scholar
Rudolfs, W. 1926. Studies on chemical changes during the life cycle of the tent caterpillar Malacosoma americana (Fab.). I. Moisture and fat. J. N.Y. ent. Soc. 34: 249256.Google Scholar
Sacharov, N. L. 1930. Studies on the cold resistance of insects. Ecology 11: 505517.Google Scholar
Sacktor, B. 1961. The role of mitochondria in respiratory metabolism of flight muscle. Annu. Rev. Ent. 6: 103130.Google Scholar
Saito, T. 1960. Distribution of P32 labelled Schradan in the American cockroach. Botyu Kagaku 25: 5764.Google Scholar
Schmidt, G. H. and Osman, M. F. H.. 1962. Analyse des Raupenöls vom Mondvogcl Phalera bucephala L. (Lepidoptera, Notodontidae). J. Ins. Physiol. 8: 233240.Google Scholar
Schreiber, K., Osske, G. and Sembdner, G.. 1961. Indentifizierung von β-sitosterin als Hauptsterin des Kartoffelkäfers (Leptinotarsa decemlineata Say). Experientia 17: 463464.Google Scholar
Scoggin, J. K. and Tauber, E.. 1950. Survey of the literature on insect lipids. Iowa St. Coll. J. Sci. 25: 99124.Google Scholar
Sedee, P. D. J. W. 1961. Intermediary metabolism in aseptically reared blowfly larvae. I. Biosynthesis of squalcne and cholesterol. II. Biosynthesis of fatty acids and amino acids. Arch. int. Physiol. Biochim. 69: 284–94, 295–309.Google Scholar
Shyamala, M. B. et al. 1960. Chloromycetin in the nutrition of the silkworm Bombyx -mori(L.). II. Influence on digestion and utilization of protein fat and minerals. J. Ins. Physiol. 4: 229234.Google Scholar
Siakotos, A. N. 1960. Phospholipids of the American cockroach. U.S. Army chem. Res. developm. Tech. Memor. 20–21: pp. 813.Google Scholar
Silverman, P. H. and Levinson, Z. H.. 1954. Lipid requirements of the larva of the housefly Musca vicina (Macq.) reared under non-aseptic conditions. Biochem. J. 58: 291294.Google Scholar
Sinoda, O. and Kurata, M.. 1932. Nutritional Study on Dermestid beetles. I. The chemical composition and especially the nature of the ether extract of beetles. J. Biochem., Tokyo 16: 129139.Google Scholar
Skuhravy, V. et al. , 1953. Flugzeugbekämpfung der Imago von Melolontha melolontha L. durch Bestaubung mit HCH. Folia zool. 16: 311.Google Scholar
Slifer, E. H. 1930. Insect development. I. Fatty acids in the grasshopper egg. Physiol. Zool. 3: 503518.Google Scholar
Slovtzov, B. 1909. Beiträge zur vergleichende Physiologie des Hungerstoffwechsels. V. Mitteilung der Hungerstoffwechsel der Mistkäfer Geotrupes stercoraiis. Biochem. Z. 19: 504508.Google Scholar
Sridhara, S. and Bhat, J. V.. 1962. Phospholipids of the silkworm Bombyx mori L. Curr. Sci. 31: 240.Google Scholar
Straus, J. 1911. Die chemische Zusammensetzung der Arbeitsbienen und Drohnen während ihrer verschiedenen Entwicklungsstadien. Z. Biol., München 56: 347397.Google Scholar
Strogaya, G. M. 1961. Characteristics of the fat and water balance as a form of adaptation to the environment in the separate development of the black-veined and cabbage white butterflies. Dokl. Ak. Nauk S.S.S.R. 139: 577580.Google Scholar
Thompson, M. J. et al. , 1962. Identity of the “housefly sterol”. Biochem. biophys. Res. Comm. 9: 113119.Google Scholar
Tietz, A. 1961. Fat synthesis in cell-free preparations of the locust fat-body. J. Lipid Res. 2: 182187.Google Scholar
Tietz, A. 1962. Fat transport in the locust. J. Lipid Res. 3: 421426.Google Scholar
Timon-David, J. 1930. Recherches sur les matières grasses des insectes. Ann. Fac. Sci. Marseille (2) 4: 29207.Google Scholar
Tomizawa, C. and Fukami, J.. 1956. Biochemical studies on the action of insecticides. III. Phosphorus metabolism of insect and influence of metabolism. Botyu-Kagaku 21: 133139.Google Scholar
Trager, W. 1948. Biotin and fat-soluble materials with biotin activity in the nutrition of mosquito larvae. J. biol. Chem. 176: 12111223.Google Scholar
Trevithick, H. P. and Lewis, R. R.. 1939. Fat from locusts. Oil and Soap 16: 128129.Google Scholar
Ushatinskaya, R. S. 1961. Summer diapause and second wintering of Colorado beetle, (Leptinotarsa decemlineata Say) in Transcarpathia. Dokl. Ak. Nauk S.S.S.R. 140: 804806.Google Scholar
Vanderzant, E. S., Kerur, D. and Reiser, R.. 1957. The role of dietary fatty acids in the development of the pink bollworm. J. econ. Ent. 50: 606608.Google Scholar
Van Handel, E. and Lum, P. T.. 1961. Sex as regulator of triglyceride metabolism in the mosquito. Science 134: 19791980.Google Scholar
Vinson, E. B. and C. W. Kearns, . 1952. Temperature and the action of DDT on the American roach. J. econ. Ent. 45: 484496.Google Scholar
Weinland, E. 1905. Über die Stoffumsetzungen während der Metamorphose der Fleischfliege Calliphora vomitoria, Z. Biol. 47: 186231.Google Scholar
Weis-Fogh, T. 1952. Fat combustion and metabolic rate of flying locusts Schistocerca gregaria (Forskal). Phil. Trans. (B) 237: 136.Google Scholar
Welsh, B. and Gordon, H. T.. 1947. The mode of action of certain insecticides on the arthropod nerve axon. J. cell. comp. Physiol. 30: 147171.Google Scholar
Wiesmann, R. 1955. Neue Erkentnisse über das Wesen der Insektizidresistenz. Congr. Int. Phytopharm. Journée des travaux pp. 69104.Google Scholar
Wiesmann, R. and Reiff, M.. 1956. Untersuchungen über die Bedeutung der Lipoide bei der Insektizidresistenz von Musca domestica L. Verh. naturf. Ges. Basel 67: 311340.Google Scholar
Wigglesworth, V. B. 1942. The storage of protein, fat, glycogen and uric acid in the fat body and other tissues of mosquito larvae. J. exp. Biol. 19: 5677.Google Scholar
Williams, C. B. 1945. Notes on the fat content of 2 British migrant moths. Proc. R. ent. Soc. Lond., A. 20: 613.Google Scholar
Winteringham, F. P. W. 1960. Phosphorylated compounds in the head and thoracic tissues of the adult housefly, Musca domestica L., during flight, rest, anoxia and starvation. Biochem. J. 75: 3845.Google Scholar
Wlodawer, P. 1956. Studies on the biochemistry of the waxmoth Galleria mellonella. 13. Role of phospholipids in the utilization of wax. Acta Biol. exp. 17: 221230.Google Scholar
Wlodawer, P. 1961. Incorporation of 32P into the phosphorus compounds of the waxmoth larvae (Galleria mellonella). Acta biochim. polon. 8: 321335.Google Scholar
Woztczak, L. and Woztczak, A.. 1960. Uncoupling of oxidative phosphorylation and inhibition of ATP-Pi exchange by a substance from insect mitochondria. Biochem. biophys. Acta 39: 277286.Google Scholar
Wren, J. J. and Mitchell, H. K.. 1959. Extraction methods and an investigation of Drosophila lipids. J. biol. Chem. 234: 28232828.Google Scholar
Yamasaki, T. and Ishii, T.. 1953. Studies on the mechanism of action of insecticide, VIII. Effects of Temperature on the nerve susceptibility to DDT in the cockroach (Periplaneta americana). Botyu-Kagaku 19: 3946.Google Scholar
Yuill, J. S. and Craig, R.. 1937. Nutrition of flesh fly larvae Lucilia sericata (Meig.). II. The development of fat. J. exp. Zool. 75: 169.Google Scholar
Zebe, E. C. 1954. Über den Stoffwechsel der Lepidopteren. Z. vergi. Physiol. 36: 290317.Google Scholar
Zebe, E. C. and McShan, W. H.. 1959. Incorporation of [C14] acetate into long-chain fatty acids by the fat body of Prodenia eridania (Lep.). Biochem. biophys. Acta 31: 513518.Google Scholar
Zulueta, J. et al. de, 1957. Seasonal variations in susceptibility to DDT of Anopheles maculipennis in Iran. Bull. Wld. Hlth. Org. 16: 475479.Google Scholar