Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-15T14:09:42.908Z Has data issue: false hasContentIssue false

FAUNAL RELATIONSHIPS BETWEEN EASTERN NORTH AMERICA AND EUROPE AS SHOWN BY INSECTS

Published online by Cambridge University Press:  31 May 2012

Gerald R. Noonan*
Affiliation:
Invertebrate Zoology Section, Milwaukee Public Museum, 800 West Wells Street, Milwaukee, Wisconsin, USA 53233
Get access

Abstract

The supercontinent of Pangaea, which once included most lands, fragmented during the Mesozoic. By the Late Cretaceous there were two northern land masses that were strikingly different from those of present day: Asiamerica consisting of present western North America and Asia; and Euramerica comprising Europe and eastern North America. Mild climates facilitated the spread of terrestrial organisms within each of these land masses, but epicontinental seas hindered movements between Europe and Asia and between eastern and western North America.The insects of Euramerica presumably once formed a fauna extending from eastern North America to Europe that differed from the fauna of Asiamerica. The opening of the North Atlantic separated insects in Europe from those in eastern North America. This produced vicarious patterns, with some insects of eastern North America now being more closely related phylogenetically to those of Europe than to those of western North America. Most groups of insects have not been examined for such trans-Atlantic vicariances, but studies reviewed in this paper suggest such relationships for some groups of Collembola, Hemiptera, Homoptera, Coleoptera, Diptera, and Hymenoptera.The last suitable land connections between Europe and eastern North America were severed approximately 20–35 million years ago. The insects separated by this severance evolved at different rates. Some groups split in this way have apparently undergone little evolution and have the same species on both sides of the North Atlantic, but other vicarious groups have differentiated into taxa that are now distinct at specific and supra-specific levels.The opening of the North Atlantic probably split both tropical- and temperate-adapted insects in Euramerica. However, without fossil data it is difficult to identify the biogeographical patterns resulting from such splitting of the tropical-adapted groups. Most presently recognized European and eastern North American vicarious patterns of insects were probably caused by division of Euramerica rather than dispersal across Beringia.

Résumé

Le Pangaea, super continent qui aurait été formé de presque toutes les terres, s'est fragmenté durant le Mésozoïque. Au Crétacé, il y avait deux masses nordiques de terres qui différaient de façon marquée des masses actuelles : L'Asiamerica, comprenant l'ouest de l'Amérique du Nord actuelle et l'Asie; et l'Euramerica, comprenant l'Europe et l'est de l'Amérique du Nord. Le climat doux facilitait la dispersion des organismes terrestres à l'intérieur des masses, mais les mers épicontinentales empêchaient les mouvements entre l'Europe et l'Asie, et entre l'est et l'ouest de l'Amérique du Nord.Les insectes d'Euramerica formaient présumément une faune couvrant l'est de l'Amérique du Nord jusqu'en Europe, différente de celle d'Asiamerica. L'ouverture de l'Atlantique Nord a séparé les insectes d'Europe de ceux de l'est de l'Amérique du Nord. Sont apparus des modes de vicariance par lesquels, certains insectes de l'est d'Amérique du Nord ressemblant plus à ceux d'Europe qu'à ceux de l'ouest de l'Amérique du Nord. La plupart des groupes d'insectes n'ont pas encore été étudiés avec l'objectif de mettre en évidence ces vicariances, mais des études examinées ici suggèrent de telles relations pour certaines groupes de Collembola, Hemiptera, Coleoptera, Diptera et Hymenoptera.Les derniers ponts de terre utilisables entre l'Europe et l'est de l'Amérique du Nord furent coupés il y a environ 25–35 millions d'années. Les insectes ainsi séparés ont évolué à des rythmes différents. Certains groupes ont apparemment peu évolué, ayant des espèces communes aux deux côtés de l'Atlantique Nord. D'autres groupes se sont différenciés en taxons distincts aux niveaux spécifique ou supra-spécifique.L'ouverture de l'Atlantique Nord a probablement scindé des espèces qui en Euramerica étaient pré-adaptées aux climats tropical ou tempéré. Cependant, en l'absence de fossiles, il est difficile d'identifier les patrons biogéographiques résultant de cette séparation pour les groupes pré-adaptés au climat tropical. La plupart des cas de vicariance reconnues impliquant l'Europe et l'est de l'Amérique du Nord résultent probablement de la division de l'Euramerica plutôt que d'une migration par le Beringia.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, R.T. 1980. A review of the subtribe Myadi: description of a new genus and species, phylogenetic relationships, and biogeography (Coleoptera: Carabidae: Pterostichini). Coleopt. Bull. 34: 129.Google Scholar
Allen, R.T. 1983. Distribution patterns among arthropods of the North Temperate Deciduous Forest Biota. Ann. Mo. hot. Gdn. 70: 616628.Google Scholar
Ball, G.E. 1963. Carabidae. pp. 55182in Arnett, R.H. Jr. (Ed.), The Beetles of the United States (A Manual for Identification). The Catholic University of America Press, Washington, DC.Google Scholar
Ball, G.E., and Freitag, R.. 1969. Zoogeography. pp. 174–190 in Freitag, R., A Revision of the Species of the Genus Evarthrus LeConte (Coleoptera: Carabidae). Quaest. Ent. 5: 89212.Google Scholar
Ball, G.E., and Negre, J.. 1972. The taxonomy of the Nearctic species of the genus Calathus Boneli (Coleoptera: Carabidae: Agonini). Trans. Am. ent. Soc. 98: 412533.Google Scholar
Ball, I.R. 1975. Nature and formulation of biogeographical hypotheses. Syst. Zool. 24: 407430.10.2307/2412904Google Scholar
Barr, T.C. Jr., 1964 a. Non-troglobitic Carabidae (Coleoptera) from caves in the United States. Coleopt. Bull. 181: 14.Google Scholar
Barr, T.C. Jr., 1964 b. The status and affinities of Duvaliopsis Jeannel (Coleoptera: Carabidae). Psyche 71(2): 5764.Google Scholar
Barr, T.C. Jr., 1967. A new Pseudanophthalmus from an epigean environment in West Virginia (Coleoptera: Carabidae). Psyche 74(2): 166172.10.1155/1967/863964Google Scholar
Barr, T.C. Jr., 1968. Cave ecology and the evolution of troglobites. pp. 35102in Dobzhansky, T., Hecht, M.K., and Steere, W.C. (Eds.), Evolutionary Biology, Vol. 2. Appleton–Century–Crofts, New York.10.1007/978-1-4684-8094-8_2Google Scholar
Barr, T.C. Jr.,, and Krekeler, C.H.. 1967. Xenotrechus, a new genus of cave trechines from Missouri (Coleoptera: Carabidae). Ann. ent. Soc. Am. 60(6): 13221325.10.1093/aesa/60.6.1322Google Scholar
Blackith, R.E., and Blackith, R.M.. 1975. Zoogeographical and ecological determinants of collembolan distribution. Proc. Irish Acad. 75(18): 345368.Google Scholar
Buchardt, B. 1978. Oxygen isotope palaeotemperatures from the Tertiary period in the North Sea area. Nature 275: 121123.Google Scholar
Cox, C.C. 1974. Vertebrate palaeodistributional patterns and continental drift. J. Biogeogr. 1: 7594.10.2307/3037956Google Scholar
Frakes, L.A. 1979. Climates throughout Geologic Time. Elsevier Scientific Publishing Co., New York. xii + 310 pp.Google Scholar
Freitag, R. 1969. A revision of the species of the genus Evarthrus LeConte (Coleoptera: Carabidae). Quaest. Ent. 5: 89212.Google Scholar
Gagné, R.J. 1981. A monograph of Trichonota with a model for the distribution of holarctic Mycetophilidae (Diptera). Tech. Bull. U.S. Dept. Agric. 1638: 164.Google Scholar
Hallam, A. 1981. Relative importance of plate movements, eustasy, and climate in controlling major biogeographical changes since the Early Mesozoic. pp. 303330in Nelson, G., and Rosen, D.E. (Eds.), Vicariance Biogeography. A Critique. Symposium of the Systematics Discussion Group of the American Museum of Natural History May 2–4, 1979. Columbia University Press, New York.Google Scholar
Heirtzler, J.R. 1973. The evolution of the North Atlantic Ocean. pp. 191196in Tarling, D.H., and Runcom, S.K. (Eds.), Implications of Continental Drift to the Earth Sciences, Vol. 1. Academic Press, New York.Google Scholar
Hodkinson, I.D. 1980. Present-day distribution patterns of the holarctic Psylloidea (Homoptera: Insecta) with particular reference to the origin of the nearctic fauna. J. Biogeogr. 7: 127146.10.2307/2844706Google Scholar
Jeannel, R. 1942. Lagenèse des faunes terrestres. Eléments de Biogéographie. Presses Universitaires de France, Paris, viii + 513 pp., 8 pls.Google Scholar
LaBrecque, J.L., Kent, D. V., and Cande, S.C.. 1977. Revised magnetic polarity time scale for Late Cretaceous and Cenozoic time. Geology 5: 330355.Google Scholar
Larsson, S.G. 1978. Baltic amber—a palaeobiological study. Entomonograph Vol. 1. Scandinavian Science Press Ltd., Klampenborg, Denmark. 192 pp.Google Scholar
Lindroth, C.H. 1957. The Faunal Connections between Europe and North America. John Wiley and Sons, Inc., New York. 344 pp.Google Scholar
Matthews, J.V. Jr., 1979 a. Tertiary and Quaternary environments: historical background for an analysis of the Canadian insect fauna, pp. 31–96 in Danks, H.V. (Ed.), Canada and its Insect Fauna. Mem. ent. Soc. Can. 108.Google Scholar
Matthews, J.V. Jr., 1979 b. Fossil beetles and the Late Cenozoic history of the tundra environment, pp. 371378in Gray, J., and Boucot, A.J. (Eds.), Historical Biogeography, Plate Tectonics, and the Changing Environment. Oregon State University Press, Corvallis.Google Scholar
McKenna, M.C. 1975. Fossil mammals and Early Eocene North Atlantic land continuity. Ann. Mo. bot. Gdn. 62: 335353.Google Scholar
Michener, C.D. 1979. Biogeography of the bees. Ann. Mo. bot. Gdn. 66(3): 277347.10.2307/2398833Google Scholar
Mills, H.B. 1939. Remarks on the geographical distribution of North American Collembola. Bull. Brooklyn ent. Soc. 34: 158161.Google Scholar
Noonan, G.R. 1979. The science of biogeography with relation to carabids. pp. 295317in Erwin, T.L., Ball, G.E., Whitehead, D.R., and Halpern, A.L. (Eds.), Carabid Beetles: Their Evolution, Natural History, and Classification. (Proceedings of the First International Symposium of Carabidology Smithsonian Institution, Washington D.C. August 21, 23 and 25, 1976). Dr. W. Junk Publishers, Boston.Google Scholar
Noonan, G.R. 1985. The influence of dispersal, vicariance, and refugia on patterns of biogeographical distributions of the beetle family Carabidae. pp. 322349in Ball, G.E. (Ed.), Taxonomy, Phylogeny and Zoogeography of Beetles and Ants. A Volume Dedicated to the Memory of Philip Jackson Darlington, Jr. (1904–1983). Dr. W. Junk Publishers.Google Scholar
Noonan, G.R. 1986. Distribution of insects in the Northern Hemisphere: continental drift and epicontinental seas. Bull. ent. Soc. Am. 32(2): 8084.Google Scholar
Norris, G. 1982. Spore-pollen evidence for early Oligocene high-latitude cool climatic episode in northern Canada. Nature 297: 387389.Google Scholar
Richards, W.R. 1965. The Callaphidini of Canada (Homoptera: Aphididae). Mem. ent. Soc. Can. 44. pp. 1149.Google Scholar
Ross, H.H. 1953. On the origin and composition of the Nearctic insect fauna. Evolution 7: 145158.Google Scholar
Ross, H.H. 1967. The evolution and past dispersal of the Trichoptera. A. Rev. Ent. 12: 169206.Google Scholar
Ross, H.H., and Ricker, W.E.. 1971. The classification, evolution, and dispersal of the winter stonefly genus Allocapnia. Ill. biol. Monogr. 45: 1166.Google Scholar
Roughley, R.E., and Pengelly, D.H.. 1981. Classification, phylogeny, and zoogeography of Hydraticus Leach (Coleoptera: Dytiscidae) of North America. Quaest. Ent. 17: 249309.Google Scholar
Schaefer, C.W., and Calabrese, D.M.. 1980. Amphi-Atlantic species-pairs in two genera of water striders (Hemiptera: Gerridae). Ent. Gen. 6(2/4): 271280.Google Scholar
Taylor, R.W. 1967. A monographic revision of the ant genus Ponera Latreille (Hymenoptera: Formicidae). Pacific Insects Monog. 13: 1112.Google Scholar
West, R.M., and Dawson, M.R.. 1978. Vertebrate paleontology and the Cenozoic history of the North Atlantic Region. Polarforschung 48(1/2): 103119.Google Scholar
Wolfe, J.A. 1975. Some aspects of plant geography of the Northern Hemisphere during the Late Cretaceous and Tertiary. Ann. Mo. bot. Gdn. 62: 264279.Google Scholar