Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-15T14:53:27.208Z Has data issue: false hasContentIssue false

EVIDENCE OF SYNCHRONIZED CYCLES IN OUTBREAK PATTERNS OF DOUGLAS-FIR TUSSOCK MOTH, ORGYIA PSEUDOTSUGATA (McDUNNOUGH) (LEPIDOPTERA: LYMANTRIIDAE)

Published online by Cambridge University Press:  31 May 2012

Roy F. Shepherd
Affiliation:
Canadian Forestry Service, Pacific Forestry Centre,506 West Burnside Rd., Victoria, British Columbia, Canada V8Z 1M5
Dayle D. Bennett
Affiliation:
USDA Forest Service, located, respectively, at 517 Gold Aveneue S.W., Albuquerque, New Mexico, 87102; 630 Sansome St., San Francisco, California, 94111; P.O. Box 7669, Missoula, Montana, 59807; P.O. Box 3623, Portland, Oregon,97208; and 1750 Front St., Boise, Idaho, 83702, U.S.A.
John W. Dale
Affiliation:
USDA Forest Service, located, respectively, at 517 Gold Aveneue S.W., Albuquerque, New Mexico, 87102; 630 Sansome St., San Francisco, California, 94111; P.O. Box 7669, Missoula, Montana, 59807; P.O. Box 3623, Portland, Oregon,97208; and 1750 Front St., Boise, Idaho, 83702, U.S.A.
Scott Tunnock
Affiliation:
USDA Forest Service, located, respectively, at 517 Gold Aveneue S.W., Albuquerque, New Mexico, 87102; 630 Sansome St., San Francisco, California, 94111; P.O. Box 7669, Missoula, Montana, 59807; P.O. Box 3623, Portland, Oregon,97208; and 1750 Front St., Boise, Idaho, 83702, U.S.A.
Robert E. Dolph
Affiliation:
USDA Forest Service, located, respectively, at 517 Gold Aveneue S.W., Albuquerque, New Mexico, 87102; 630 Sansome St., San Francisco, California, 94111; P.O. Box 7669, Missoula, Montana, 59807; P.O. Box 3623, Portland, Oregon,97208; and 1750 Front St., Boise, Idaho, 83702, U.S.A.
Ralph W. Thier
Affiliation:
USDA Forest Service, located, respectively, at 517 Gold Aveneue S.W., Albuquerque, New Mexico, 87102; 630 Sansome St., San Francisco, California, 94111; P.O. Box 7669, Missoula, Montana, 59807; P.O. Box 3623, Portland, Oregon,97208; and 1750 Front St., Boise, Idaho, 83702, U.S.A.
Get access

Abstract

Outbreak patterns of Douglas-fir tussock moth, Orgyia pseudotsugata (McDunnough), over western North America historically appear to be synchronous, particularly in British Columbia, Washington, Oregon, and northern Idaho. Populations of the insect increase to outbreak and collapse in a variable cycle, averaging 9 years between peaks. A review of all outbreaks suggests repeated, widespread, nucleopolyhedrosis viral epizootics are responsible for the collapse of the population and, hence, the cycle. The virus appears to survive in the soil between outbreaks and to be carried incidentally to foliage where it is occasionally consumed by larvae. Ingestion of a single particle is probably sufficient to cause infection. Populations of the moth increase until density reaches the point where larvae to larvae infection is established. The viral inoculum builds rapidly following that point and spreads widely so that distant populations at all densities become infected, and collapse in the same year. The epizootic continues for another year. Then foliage contamination disappears, and populations reach their lowest densities before starting the cycle again.

Résumé

Les infestations de la chenille à houppes du douglas Orgyia pseudotsugata (McDunnough), dans l'ouest de l'Amérique du Nord suivaient, historiquement, un cycle de 9 ans. L'effondrement des infestations était synchrone sur une grande étendue, plus particulièrement en Colombie-Britannique et dans le Washington, l'Oregon et le nord de l'Idaho. On émet l'hypothèse qu'un virus provoquant une polyédrose nucléaire soit responsable : le virus, qui survit dans le sol entre chaque infestation, se retrouve parfois sur le feuillage où il est consommé par des larves. L'ingestion d'une seule particule de virus suffit probablement à causer l'infection. Les faibles populations endémiques augmentent pendant quelques générations sans qu'il y ait régulation par le virus. Lorsque leur densité atteint un certain point, il se produit une réinfection de larves à larves; l'inoculum viral augmente rapidement et est dispersé sur une grande distance, de sorte que des populations éloignées de toutes densités sont infectées et s'effondrent la même année. L'épizootie se poursuit pendant une autre année avant que la contamination ne disparaisse du feuillage, et les populations atteignent alors leurs densités les plus faibles, puis le cycle recommence.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, R.M., and May, R.M.. 1980. Infectious diseases and population cycles of forest insects. Science 210: 658661.Google Scholar
Anderson, R.M., and May, R.M.. 1981. The population dynamics of microparasites and their invertebrate hosts. Phil. Trans. R. Soc. Lond. Ser. B 291 (1054): 451524.Google Scholar
Anonymous. 1979. How to determine the occurrence of virus in egg masses. U.S. Dep. Agric. Handbook 548. 7 pp.Google Scholar
Berryman, A.A. 1978. Population cycles of the Douglas-fir tussock moth (Lepidoptera: Lymantriidae): the time-delay hypothesis. Can. Ent. 110: 513518.Google Scholar
Brookes, M.H., Stark, R. W., and Campbell, R. W. (Eds.). 1978. The Douglas-fir tussock moth: a synthesis. U.S. Dep. Agric. For. Serv. Tech. Bull. 1585. 331 pp.Google Scholar
Burges, H.D., and Thompson, E.M.. 1971. Standardization and assay of microbial insecticides, pp. 591–622 in Burges, H.D., and Hussey, N.W. (Eds.), Microbial Control of Insects and Mites. Academic Press, London and New York. 861 pp.Google Scholar
Clendenen, G. 1975. Tussock moth, Orgyia pseudotsugata McD. Outbreaks and climatic factors: a correlation analysis. Prelim. Rep. Coll. For. Res. Univ. Wash., Seattle. 62 pp.Google Scholar
Fuxa, J.R. 1987. Ecological considerations for the use of entomopathogens in IPM. A. Rev. Ent. 32: 225251.Google Scholar
Harris, J.W.E., Dawson, A.F., and Brown, R.G.. 1985. The Douglas-fir tussock moth in British Columbia. Can. For. Serv. Pac. For. Cent. Inf. Rep. BC-X-268. 16 pp.Google Scholar
Harris, L.D. 1984. The fragmented forest. Univ. Chicago Press, Chicago. 211 pp.Google Scholar
Huber, J., and Hughes, P.R.. 1984. Quantitative bioassay in insect pathology. Bull. ent. Soc. Am. 30: 3134.Google Scholar
Hughes, K.M. 1976. Notes on the nuclear polyhedrosis viruses of tussock moths of the genus Orgyia (Lepidoptera). Can. Ent. 108: 479484.Google Scholar
Hughes, K.M. 1978. Description of the viruses, pp. 133–136 in Brookes, M.H., Stark, R.W., and Campbell, R.W. (Eds.), The Douglas-Fir Tussock Moth: a Synthesis. U.S. Dep. Agric. For. Serv. Tech. Bull. 1585. 331 pp.Google Scholar
Martignoni, M.E. 1978. Virus propagation, pp. 140–143 in Brookes, M.H., Stark, R.W., and Campbell, R.W. (Eds.), The Douglas-Fir Tussock Moth: a Synthesis. U.S. Dep. Agric. For. Serv. Tech. Bull. 1585. 331 pp.Google Scholar
Mason, R.R. 1974. Population change in an outbreak of the Douglas-fir tussock moth, Ogyia pseudotsugata (Lepidoptera: Lymantriidae), in central Arizona. Can. Ent. 106: 11711174.Google Scholar
Mason, R.R. 1978. Synchronous patterns in an outbreak of the Douglas-fir tussock moth. Environ. Ent. 7: 672675.Google Scholar
Mason, R.R. 1981. Numerical analysis of the causes of population collapse in a severe outbreak of the Douglas-fir tussock moth. Ann. ent. Soc. Am. 74: 5157.Google Scholar
Mason, R.R., and Luck, R.F.. 1978. Quantitative expression and distribution of populations, pp. 39–41 in Brookes, M.H., Stark, R.W., and Campbell, R.W. (Eds.), The Douglas-Fir Tussock Moth: a Synthesis. U.S. Dep. Agric. For. Serv. Tech. Bull. 1585. 331 pp.Google Scholar
Mason, R.R., Torgersen, T.R., Wickman, B.E., and Paul, H.G.. 1983. Natural regulation of a Douglas-fir tussock moth (Lepidoptera: Lymantriidae) population in the Sierra Nevada. Environ. Ent. 12: 587594.Google Scholar
Moran, P.A.P. 1954. The logic of mathematical theory of animal populations. J. Wildlife Manage. 18: 6066.Google Scholar
Shepherd, R.F. 1977. A classification of western Canadian defoliating forest insects by outbreak spread characteristics and habitat restriction, pp. 80–88 in Kulman, H.M., and Chiang, H.C. (Eds.), Insect Ecology. Univ. Minn. Agric. Exp. Stn. Tech. Bull. 310. 107 pp.Google Scholar
Shepherd, R.F. (Ed.) 1980. Operational field trials against the Douglas-fir tussock moth with chemical and biological insecticides. Can. For. Serv. Pac. For. Res. Cent. Inf. Rep. BC-X-201. 16 pp.Google Scholar
Shepherd, R.F., Gray, T.G., Chorney, R.J., and Daterman, G.E.. 1985. Pest management of Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae): monitoring endemic populations with pheromone traps to detect incipient outbreaks. Can. Ent. 117: 839848.Google Scholar
Shepherd, R.F., and Otvos, I.S.. 1986. Pest management of Douglas-fir tussock moth: procedures for insect monitoring, problem evaluation and control actions. Can. For. Serv. Pac. For. Cent. Inf. Rep. BC-X-270. 14 pp.Google Scholar
Shepherd, R.F., Otvos, I.S., Chorney, R.J., and Cunningham, J.C.. 1984. Pest management of Douglas-fir tussock moth (Lepidoptera: Lymantriidae): prevention of an outbreak through early treatment with a nuclear polyhedrosis virus by ground and aerial application. Can. Ent. 116: 15331542.Google Scholar
Stark, R.W. 1987. Impacts of forest insects and diseases: significance and measurement. CRC crit. Rev. Pl. Sci. 5: 161203.Google Scholar
Sugden, B.A. 1957. A brief history of outbreaks of Douglas-fir tussock moth, Hemerocampa pseudotsugata McD., in British Columbia. J. ent. Soc. B.C. 54: 3739.Google Scholar
Thompson, C.G. 1978. Nuclear polyhedrosis epizootiology. pp. 136–140 in Brookes, M.H., Stark, R.W., and Campbell, R.W. (Eds.), The Douglas-Fir Tussock Moth: a Synthesis. U.S. Dep. Agric. For. Serv. Tech. Bull. 1585. 331 pp.Google Scholar
Thompson, C.G., and Scott, D.W.. 1979. Production and persistence of the nuclear polyhedrosis virus of the Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae), in the forest ecosystem. J. Invertebr. Pathol. 33: 5765.Google Scholar
Thompson, C.G., Scott, D.W., and Wickman, B.E.. 1981. Long-term persistence of the nuclear polyhedrosis virus of the Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae), in forest soil. Environ. Ent. 10: 254255.Google Scholar
Torgersen, T.R., and Dahlsten, D.L.. 1978. Natural mortality, pp. 47–53 in Brookes, M.H., Stark, R.W., and Campbell, R.W. (Eds.), The Douglas-Fir Tussock Moth: a Synthesis. U.S. Dep. Agric. For. Serv. Tech. Bull. 1585. 331 pp.Google Scholar
Tunnock, S., Ollieu, M., and Thier, R.W.. 1985. History of Douglas-fir tussock moth and related suppression efforts in the intermountain and northern Rocky Mountain regions 1927 through 1984. U.S. Dep. Agric. For. Serv. Intermountain and Northern Region Rep. 85–13. 51 pp.Google Scholar
Vezina, A., and Peterman, R.M.. 1985. Tests of the role of a nuclear polyhedrosis virus in the population dynamics of its host, Douglas-fir tussock moth, Orgyia pseudotsugata (Lepidoptera: Lymantriidae). Oecologia (Berlin) 67: 260266.Google Scholar
Watt, K.E.F. 1968. A computer approach to analysis of data on weather, population fluctuations and disease. pp. 145–159 in Lowry, W.P. (Ed.), Biometeorology: Proceedings of the 28th Annual Biology Colloquium, 1967. Oregon State Univ. Press, Corvallis. 171 pp.Google Scholar
Wellington, W.G. 1962. Population quality and the maintenance of nuclear polyhedrosis between outbreaks of Malacosoma pluviale (Dyar). J. Insect Pathol. 4: 285305.Google Scholar
Wellner, C.A. 1978. Host stand biology and ecology, pp. 7–23 in Brookes, M.H., Stark, R.W., and Campbell, R.W. (Eds.), The Douglas-Fir Tussock Moth: a Synthesis. U.S. Dep. Agric. For. Serv. Tech. Bull. 1585 331 pp.Google Scholar