Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-15T10:20:53.222Z Has data issue: false hasContentIssue false

ENTOMOPOXVIRUSES ASSOCIATED WITH GRASSHOPPERS AND LOCUSTS: BIOCHEMICAL CHARACTERIZATION

Published online by Cambridge University Press:  31 May 2012

M.A. Erlandson
Affiliation:
Agriculture and Agri-Food Canada Research Centre, 107 Science Place, Saskatoon, Saskatchewan, Canada S7N 0X2
D.A. Streett
Affiliation:
USDA/ARS, Rangeland Insect Laboratory, Montana State University, Bozeman, Montana, USA 59717-0366
Get access

Abstract

Entomopoxviruses (EPVs) are large DNA viruses with structural similarities to vertebrate poxviruses. EPV virions are occluded in large (3–15 μm in diameter) proteinaceous occlusion bodies (OBs). To date, EPVs are reported from 15 species of grasshoppers and locusts. The current information on the biochemical characterization of these EPVs is summarized in our review. The DNA genomes of grasshopper and locust EPVs analysed to date have a G+C ratio of approximately 18.5% and genome size estimates generated by various methods range from 180 to 194 kilobase pairs (kbp). Restriction endonuclease enzyme analysis of a number of grasshopper and locust EPV DNAs shows the virus isolates to be distinct and the technique will be useful in identifying virus isolates. The structural proteins of certain grasshopper EPVs have also been analysed. Forty to 50 polypeptides ranging in molecular weight from 12 to 200 kilodaltons (kDa) have been detected by SDS-PAGE analysis of virions released from OBs and the polypeptide profiles are distinct for many of the virus isolates. The proteinaceous matrix of the OB of EPVs contains one predominant protein referred to as spheroidin. The spheroidin protein from most grasshopper EPVs is approximately the same molecular weight, 107 kDa, when analysed by SDS-PAGE. As with other groups of occluded insect viruses, grasshopper EPVs have a protease activity associated with OBs derived from infected insects. The possible role of this protease activity in the infection cycle is discussed. Finally, the role of various molecular techniques for the detection and identification of EPV infections in laboratory and field populations of grasshoppers and locusts is discussed. The development of EPV-specific monoclonal antibodies and DNA hybridization probes for the detection of virus infections is reviewed. As well, the possible use of polymerase chain reaction and randomly amplified polymorphic DNA fingerprinting techniques for the detection and identification of EPV infections is discussed.

Résumé

Les entomopoxvirus (EPV) sont des virus d'ADN dont la structure ressemble à celle des poxvirus de vertébrés. Les virions des EPV sont enfermés dans des corps d'inclusion protéinés de grande taille (3–15 μm de diamètre). à ce jour, des EPV ont été signalés chez 15 espèces de criquets. Les informations actuelles sur les propriétés biochimiques de ces EPV sont résumées. Les génomes d'ADN des EPV de criquets connus ont un rapport G+C d'environ 18,5% et la taille théorique de génomes, estimée par différente méthodes, va de 180 à 194 paires de kilobases (kbp). L'analyse des fragments polymorphiques d'ADN des EPV de plusieurs criquets au moyen d'endonucléases de restriction a démontré que les isolats des virus sont distincts et que la technique s'avérera très utile dans l'identification des isolats de virus. Les protéines structurelles de certains EPV de criquets ont également été analysées. De 40 à 50 polypeptides de masse moléculaire allant de 12 à 20 kilodaltons (kDa) ont été reconnus par analyse de protéines par gel d'électrophorèse (SDS-PAGE) des virions libérés des corps d'inclusion et les profils de ces polypeptides sont spécifiques dans le cas de plusieurs des isolats de virus. La matrice protéinique des corps d'inclusion des EPV contient une protéine prédominante appelée ici sphéroïdine. La sphéroïdine de la plupart des EPV de criquets a à peu près toujours la même masse moléculaire, soit 107 kDa selon une analyse SDS-PAGE. Comme la plupart des autres groupes de virus d'insectes contenus dans des corps d'inclusion, les EPV de criquets possèdent une protéase associée aux corps d'inclusion qui leur vient des insectes infectés. Le rôle possible de l'activité de la protéase dans le cycle de l'infection fait l'objet d'une discussion. Enfin, l'efficacité de diverses techniques moléculaires dans le dépistage et l'identification des infections d'entomopoxvirus au sein des populations expérimentales et naturelles de criquets est examinée. Nous examinons où en est le progrès dans l'élaboration d'anticorps monoclonaux spécifiques aux EPV et de sondes d'hybridation de l'ADN pour le dépistage des infections virales. De même, la possibilité d'utiliser la polymérisation par réaction en chaîne et les techniques d'amplification aléatoire de l'ADN polymorphe pour dépister et identifier les infections par des EPV est examinée également. [Traduit par la Rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

1

Contribution No. 1154 from the Saskatchewan Research Centre.

2

Present address: USDA/ARS, Southern Insect Management Unit, P.O. Box 346, Stoneville, Mississippi. 38776 U.S.A.

References

Arif, B.M. 1984. The entomopoxviruses. Advances in Virus Research 29: 195213.Google Scholar
Banville, M., Dumas, F., Trifiro, S., Arif, B. and Richardson, C.. 1992. The predicted amino acid sequence of the spheroidin protein from Amsacta moorei entomopoxvirus: Lack of homology between major occlusion body proteins of different poxviruses. Journal of General Virology 73: 559566.Google Scholar
Bensimon, A., Zinger, S., Gerassi, E., Hauschner, A., Harpaz, I. and Sela, I.. 1987. “Dark Cheeks”, a lethal disease of locusts provoked by a lepidopterous baculovirus. Journal of Invertebrate Pathology 50: 254260.Google Scholar
Bidochka, M.J., McDonald, M.A., St. Leger, R.J. and Roberts, D.W.. 1994. Differentiation of species and strains of entomopathogenic fungi by random amplification of polymorphic DNA (RAPD). Current Genetics 25: 107113.Google Scholar
Bilimoria, S.L. and Arif, B.M.. 1979. Subunit protein and alkaline protease of entomopoxvirus spheroids. Virology 96: 596603.Google Scholar
Bilimoria, S.L. and Arif, B.M.. 1980. Structural polypeptides of Choristoneura biennis entomopoxvirus. Virology 104: 253260.Google Scholar
Dall, D., Sriskantha, A., Vera, A., Lai-Fook, J. and Symonds, T.. 1993. A gene encoding a highly expressed spindle body protein of Heliothis armigera entomopoxvirus. Journal of General Virology 74: 18111818.Google Scholar
Eppstein, D.A. and Thoma, J.A.. 1975. Alkaline protease associated with the matrix protein of a virus infecting the cabbage looper. Biochemical and Biophysical Research Communications 62: 478484.Google Scholar
Erlandson, M. 1991. Protease activity associated with occlusion body preparations of an entomopoxvirus from Melanoplus sanguinipes. Journal of Invertebrate Pathology 57: 255263.Google Scholar
Esposito, J.J. 1991. Poxviridae. pp. 91–102 in Francki, R.I.B., Fraquet, CM., Knudson, D.L., and Brown, F. (Eds.), Classification and Nomenclature of Viruses. Archives of Virology, Supplementum 2: 450 pp.Google Scholar
Goodwin, R.H., Milner, R.J. and Beaton, C.D.. 1991. Entomopoxvirinae. pp. 259–285 in Adams, J.R., and Bonami, J.R. (Eds.), Atlas of Invertebrate Viruses. CRC Press, Boca Raton, FL. 684 pp.Google Scholar
Granados, R.R. 1973. Insect poxviruses: Pathology, morphology, and development, pp. 73–94 in Roberts, D.W., and Yendol, W.G. (Eds.), Some Recent Advances in Insect Pathology. Miscellaneous Publications of the Entomological Society of America. 119 pp.Google Scholar
Granados, R.R. 1981. Entomopoxvirus infections in insects, pp. 101–126 in Davidson, E.W. (Ed.), Pathogenesis of Invertebrate Microbial Diseases. Allanheld Osmun Publishers, Totowa, NJ. 562 pp.Google Scholar
Hall, R.L. and Hink, W.F.. 1990. Physical mapping and field inversion gel electrophoresis of Amsacta moorei entomopoxvirus DNA. Archives of Virology 110: 7790.Google Scholar
Hall, R.L. and Moyer, R.W.. 1991. Identification, cloning, and sequencing of a fragment of Amsacta moorei entomopoxvirus DNA containing the spheroidin gene and three vaccinia virus-related open reading frames. Journal of Virology 65: 65166527.Google Scholar
Hall, R.L. and Moyer, R.W.. 1993. Identification of an Amsacta spheroidin-like protein within the occlusion bodies of Choristoneura entomopoxviruses. Virology 192: 179187.Google Scholar
Henry, J.E. and Jutila, J.W.. 1966. The isolation of a polyhedrosis virus from a grasshopper. Journal of Invertebrate Pathology 8: 417418.Google Scholar
Kurtti, T.J., Munderloh, U.G., Ross, S.E., Ahlstrand, G.G. and Streett, D.A.. 1990. Cell culture systems for production of host cell dependent grasshopper pathogens, pp. 246–251 in Cooperative Grasshopper Integrated Pest Management Project 1990 Annual Report. USDA/APHIS. 282 pp.Google Scholar
Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature (London) 227: 680685.Google Scholar
Langridge, W.H.R. 1983. Partial characterization of DNA from five entomopoxviruses. Journal of Invertebrate Pathology 42: 369375.Google Scholar
Langridge, W.H.R. 1984. Detection of DNA base sequence homology between entomopoxviruses isolated from Lepidoptera and Orthoptera. Journal of Invertebrate Pathology 43: 4146.Google Scholar
Langridge, W.H.R., Bozarth, R.F. and Roberts, D.W.. 1977. The base composition of entomopoxvirus DNA. Virology 76: 616620.Google Scholar
Langridge, W.H.R. and Henry, J.E.. 1981. Molecular weight and base composition of DNA isolated from Melanoplus sanguinipes entomopoxvirus. Journal of Invertebrate Pathology 37: 3437.Google Scholar
Langridge, W.H.R., Oma, E. and Henry, J.E.. 1983. Characterization of the DNA and structural proteins of entomopoxviruses from Melanoplus sanguinipes, Arphia conspirsa, and Phoetaliotes nebrascensis (Orthoptera). Journal of Invertebrate Pathology 42: 327333.Google Scholar
Langridge, W.H.R. and Roberts, D.W.. 1982. Structural proteins of Amsacta moorei, Euxoa auxiliaris, and Melanoplus sanguinipes entomopoxviruses. Journal of Invertebrate Pathology 39: 346353.Google Scholar
Maeda, S., Nagata, M. and Tanada, Y.. 1983. Ionic conditions affecting release of and absorption of an alkaline protease associated with the occlusion bodies of insect baculoviruses. Journal of Invertebrate Pathology 42: 376383.Google Scholar
Maskel, S.M. and DiCapua, R.A.. 1988. Qualitative assays for the protease activity of Lymantria dispar nuclear polyhedrosis virus. Journal of Invertebrate Pathology 51: 139144.Google Scholar
McGuire, M.R. and Henry, J.E.. 1989. Production and partial characterization of monoclonal antibodies for detection of entomopoxvirus from Melanoplus sanguinipes. Entomologia experimentalis et applicata 51: 2128.Google Scholar
McIntosh, A.H., Rice, W.C. and Ignoffo, C.M.. 1987. Genotypic variants in wild-type populations of baculoviruses. pp. 305325in Maramorosch, K. (Ed.), Biotechnology in Invertebrate Pathology and Cell Culture. Academic Press, San Diego, CA.Google Scholar
Mitchell, F.L., Smith, G.E. and Smith, J.W. Jr., 1983. Characterization of an entomopoxvirus of the lesser cornstalk borer (Elasmopalpus lignosellus). Journal of Invertebrate Pathology 42: 299305.Google Scholar
Nagata, M. and Tanada, Y.. 1983. Origin of an alkaline protease associated with the capsule of a granulosis virus of the armyworm, Pseudaletia unipuncta (Haworth). Archives of Virology 76: 245256.Google Scholar
Rohrmann, G.F. 1992. Baculovirus structural proteins. Journal of General Virology 73: 749761.Google Scholar
Sakal, E., Applebaum, S.W. and Birk, Y.. 1989. Purification and characterization of trypsins from the digestive tract of Locusta migratoria. International Journal of Peptide and Protein Research 34: 489505.Google Scholar
Streett, D.A. and McGuire, M.R.. 1988. Microbial control of rangeland grasshoppers: New techniques for the detection of entomopathogens. Montana Ag Research 5: 15.Google Scholar
Streett, D.A., Oma, E. and Henry, J.E.. 1990. Cross infection of three grasshopper species with the Melanoplus sanguinipes entomopoxvirus. Journal of Invertebrate Pathology 56: 419421.Google Scholar
Streett, D.A., Woods, S.A. and Erlandson, M.A.. 1997. Entomopoxviruses of grasshoppers and locusts: Biology and biological control potential, pp. 115–130 in Goettel, M.S., and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society of Canada 171: 400 pp.Google Scholar
Strongman, D.B. and MacKay, R.M.. 1993. Discrimination between Hirsutella longicolla var. longicolla and Hirsutella longicolla var. cornuta using random amplified polymorphic DNA fingerprinting. Mycologica 85: 6570.Google Scholar
Tweeten, K.A., Bulla, L.A. Jr.,, and Consigli, R.A.. 1978. Characterization of an alkaline protease associated with a granulosis virus of Plodia interpunctella. Journal of Virology 26: 702711.Google Scholar
Vialard, J.E., Yuen, L. and Richardson, C.D.. 1990. Identification and characterization of a baculovirus occlusion body glycoprotein which resembles spheroidin, an entomopoxvirus protein. Journal of Virology 64: 58045811.Google Scholar
Yuen, L., Dionne, J., Arif, B. and Richardson, C.. 1990. Identification and sequencing of the spheroidin gene of Choristoneura biennis entomopoxvirus. Virology 175: 427433.Google Scholar