Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-15T14:34:58.378Z Has data issue: false hasContentIssue false

EFFECTS OF TEMPERATURE ON DEVELOPMENTAL RATE AND ADULT WEIGHT OF AUSTRALIAN POPULATIONS OF ACYRTHOSIPHON PISUM (HARRIS) (HOMOPTERA: APHIDIDAE)

Published online by Cambridge University Press:  31 May 2012

Robert J. Lamb
Affiliation:
Agriculture Canada Research Station, 195 Dafoe Road, Winnipeg, Manitoba, Canada R3T 2M9
Patricia A. MacKay
Affiliation:
Department of Entomology, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
Get access

Abstract

Three populations of the pea aphid, Acyrthosiphon pisum (Harris), from locations between 27 and 36°S in eastern Australia were studied at five constant temperatures from 10 to 28 °C. A three-parameter, nonlinear equation accurately described developmental rate as a function of temperature for each of the five lines from each population. Maximum adult weight was attained at 20 °C. Wingless aphids developed faster and were heavier than winged aphids. There were no significant differences in developmental times among populations, and adult weights among populations differed only at 25 °C. These weight differences and other nonsignificant differences among populations showed no trends with the long-term average temperatures at the collection sites. This finding indicates that developmental rate and adult weight have not been adapted to temperature in the 5 years since the aphids were introduced. The maximum rate of development, optimum temperature for rapid development, developmental threshold, and optimum temperature for high adult weight were higher for the Australian populations than for North American populations, but these differences do not reflect adaptation to different environmental temperatures. We conclude that Australian populations of A. pisum did not originate in North America.

Résumé

On a étudié trois populations du puceron du pois, Acyrthosiphon pisum (Harris), provenant de localités situées entre 27 et 36°S en Australie orientale, à cinq températures constantes allant de 10 à 28 °C. Une équation non-linéaire à trois paramètres a permis de décrire adéquatement le taux de développement en fonction de la température, pour chacune de cinq lignées de chaque population. Le poids adulte maximal a été obtenu à 20 °C. Les pucerons aptères se sont développés plus rapidement et ont atteint un poids plus élevé que les ailés. La durée du développement ne différait pas significativement entre populations, et le poids adulte n'a différé qu'à 25 °C. Ces différences pondérales et d'autres différences non significatives entre les populations n'ont pas montré de tendances conformes aux températures moyennes caractéristiques des sites du collection. Cette observation indique qu'il n'y aurait pas eu d'adaptation du taux de développement ou du poids adulte en réponse à la température locale, au cours des 5 ans écoulés depuis l'introduction du puceron. Le taux maximal de développement, la température optimale pour la vitesse de développement, le seuil thermique du développement, et la température optimale pour maximiser le poids adulte, étaient tous plus élevés chez les populations Australiennes qu'Américaines, mais ces différences ne réflètent pas d'adaptation aux températures locales. Nous concluons que les populations Australiennes d'A. pisum n'originent pas d'Amérique du Nord.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bieri, M., Baumgaertner, J., Bianchi, G., Delucchi, V., and von Arx, R.. 1983. Development and fecundity of pea aphid (Acyrthosiphon pisum Harris) as affected by constant temperatures and by pea varieties. Bull. Soc. ent. Suisse 56: 163171.Google Scholar
Campbell, A., and Mackauer, M.. 1975. Thermal constants for development of the pea aphid (Homoptera: Aphididae) and some of its parasites. Can. Ent. 107: 419423.Google Scholar
Campbell, A., Frazer, B.D., Gilbert, N., Gutierrez, A.P., and Mackauer, M.. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11: 431438.Google Scholar
Director of Meteorology. 1956. Climatic Averages, Australia. Director of Meteorology, Melbourne, Australia.Google Scholar
Hughes, R.D., and Bryce, M.A.. 1984. Biological characterization of two biotypes of pea aphid, one susceptible and the other resistant to fungal pathogens, coexisting on lucerne in Australia. Ent. Exp. Appl. 36: 225229.Google Scholar
Hutchison, W.D., and Hogg, D.B.. 1984. Demographic statistics for the pea aphid (Homoptera: Aphididae) in Wisconsin and a comparison with other populations. Environ. Ent. 13: 11731181.Google Scholar
Kenten, J. 1955. The effect of photoperiod and temperature on reproduction in Acyrthosiphon pisum (Harris) and on the forms produced. Bull. ent. Res. 46: 599624.Google Scholar
Lamb, R.J., and MacKay, P.A.. 1979. Variability in migratory tendency within and among natural populations of the pea aphid, Acyrthosiphon pisum. Oecologia (Berlin) 39: 289299.Google Scholar
Lamb, R.J., and Pointing, P. J.. 1972. Sexual morph determination in the aphid, Acyrthosiphon pisum. J. Insect Physiol. 18: 20292042.Google Scholar
Lamb, R.J., MacKay, P.A., and Gerber, G.H.. 1987. Are development and growth of the pea aphid, Acyrthosiphon pisum, adapted to local temperatures? Oecologia (Berlin) 72: 170177.Google Scholar
MacKay, P.A., and Downer, R.G.H.. 1979. Water content, weight change, and activity of apterous and alate virginoparous Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Can. J. Zool. 57: 363367.Google Scholar
MacKay, P.A., and Wellington, W.G.. 1975. A comparison of the reproductive patterns of apterous and alate virginoparous Acyrthosiphon pisum (Homoptera: Aphididae). Can. Ent. 107: 11611166.Google Scholar
MacKay, P.A., and Wellington, W.G.. 1977. Maternal age as a source of variation in the ability of an aphid to produce dispersing forms. Res. Popul. Ecol. (Kyoto) 18: 195209.Google Scholar
MacKay, P.A., Lamb, R.J., and Hughes, M.A.. 1988. Sexual and fundatrix-like morphs in Australian populations of the pea aphid, Acyrthosiphon pisum. Environ. Ent. (in press).Google Scholar
MacKay, P.A., Reeleder, D.J., and Lamb, R.J.. 1983. Sexual morph production by apterous and alate viviparous Acyrthosiphon pisum (Harris) (Homoptera: Aphididae). Can. J. Zool. 61: 952957.Google Scholar
Milne, W.M. 1986. The release and establishment of Aphidius ervi Haliday (Hymenoptera: Ichneumonidae) in lucerne aphids in eastern Australia. J. Aust. ent. Soc. 25: 123130.Google Scholar
Milner, R.J. 1981. A modified leaf-disc method for rearing of aphids. Australian Invertebr. Pathol. Newsl. 2: 4647.Google Scholar
SAS Institute Inc. 1982. SAS user's guide: statistics. SAS Institute, Cary NC.Google Scholar
Taylor, F. 1981. Ecology and evolution of physiological time in insects. Am. Nat. 117: 123.Google Scholar