Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-19T09:44:46.989Z Has data issue: false hasContentIssue false

ATTEMPTS TO INCREASE THE PREVALENCE AND SEVERITY OF INFECTION OF GRASSHOPPERS WITH THE ENTOMOPATHOGEN NOSEMA LOCUSTAE CANNING (MICROSPORIDA: NOSEMATIDAE) BY REPEATED FIELD APPLICATION

Published online by Cambridge University Press:  31 May 2012

Dan L. Johnson
Affiliation:
Land Resource Sciences, Agriculture and Agri-Food Canada, Research Centre, P.O. Box 3000, Lethbridge, Albeta, Canada T1J 4B1
Michael G. Dolinski
Affiliation:
Alberta Agriculture, Food and Rural Development, 7000 - 113 Street, Edmonton, Alberta, Canada T6H 5T6
Get access

Abstract

Initial promising results with the microsporidium Nosema locustae Canning as a means of controlling grasshoppers have been followed by some cases of limited field performance. However, at sublethal doses this entomopathogen can reduce grasshopper feeding, reproduction and development, suggesting that the damage caused to range, forages and crops might be reduced if the prevalence of infection in the field could be increased over previously achieved levels. In a field experiment, we treated plots totalling 780 ha with bran bait containing N. locustae at either 2.5 or 5.0 × 109 spores per ha in each of two consecutive years, and grasshopper populations and the prevalence and degree of infection were monitored every two weeks during the summers, for three years. Little or no background infection occurred in the untreated plots. Infections of grasshoppers with N. locustae in the treated plots during the first year of application, typically increased from less than 5% by the 4th week to 10–15% by the 8th week after application. The higher application rates resulted in only slightly higher percentages infected. Most of the infections were classified by microscopic examination as trace to moderate, although heavy infections were observed in the second year. Up to 35% of some Melanoplus species collected from the treated plots were found to contain N. locustae spores, but intensive monitoring indicated population reductions that were inconsistent among sites and generally less than 50%. Other species, notably Aeropedellus clavatus, Ageneotettix deorum, Bruneria brunnea and Camnula pellucida, failed to acquire significant infection by N. locustae. The presence of these apparently less susceptible species did not account for the poor overall performance of the treatments. Two annual applications of N. locustae did not greatly increase the rate or severity of infections in grasshopper populations, although at one of the three sites, trace infections were found in the treated plots six years later.Although Nosema may eventually have value as a component of an integrated grasshopper pest management system, the low virulence cannot be readily overcome by repeated applications.

Résumé

Le succès prometteur As Nosema locustae Canning (Microsporida) comme agent de lutte contre les criquets au cours d'expériences préliminaires a été suivi de résultats assez décevants sur le terrain. Cependant, à des doses sublétales, cet entomopathogène peut réduire l'alimentation des criquets, leur reproduction et leur développement, nous permettant de croire que les dommages causés dans les pâturages et dans les cultures pourraient être réduits par augmentation de la gravité des infections. Au cours d'une expérience en nature, nous avons traité des parcelles de terrain totalisant 780 ha en répandant du son infecté par N. locustae à raison de 2,5 ou 5,0 × 109 spores par ha au cours de 2 années consécutives; l'importance des populations de criquets, de même que la fréquence et la gravité des infections ont été notées toutes les 2 semaines au cours de l'été pendant 3 ans. Peu d'infections, (ou alors aucune), ont été relevées dans les parcelles non traitées. Les infections des criquets dans les parcelles traitées au cours de la 1ière année après l'infection avaient augmenté de 5% à la 4e semaine et de 10–15% à la 8e semaine. L'application de concentrations plus élevées n'a donnée qu'une faible augmentation du pourcentage de criquets infectés. à l'examen microscopique, la plupart des infections se sont révélées légères ou modérées, mais des infections plus graves ont été observées au cours de la 2e année. Jusqu'à 35% de certains espèces deMelanoplus recueillies dans les parcelles traitées contennaient des spores de N. locustae, mais un examen intensif a révélé que les réductions de populations n'étaient pas les mêmes partout et s'élevaient rarement au-delà de 50%. Chez d'autres espèces, notamment Aeropedellus clavatus, Ageneotettix deorum, Bruneria brunnea et Camnula pellucida, les infections étaient négligeables. La présence de ces espèces apparemment moins sensibles n'explique pas la performance généralement faible des traitements. Deux applications annuelles de N. locustae n'ont pas augmenté considérablement la fréquence ou la gravité des infections chez les populations de criquets, même si, à l'un des trois sites, des infections légères prévalaient toujours dans les parcelles traitées 6 ans après l'application.

Nosema deviendra peut-être éventuellement une composante utile dans les programmes de lutte intégrée contre les criquets, mais il est certain que sa faible virulence ne peut être compensée par des applications répétées. [Traduit par la rédaction]

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

AAFC (Agriculture and Agri-Food Canada). 1993. Special review of carbofuran insecticide: Effects on avian fauna and value to agriculture. Discussion Document D93-02, July 30, 1993. 53 pp.Google Scholar
Abbotts, W.S. 1925. A method of computing the effectiveness of an insecticide. Journal of Economic Entomology 18: 265267.Google Scholar
Bomar, C.R., Lockwood, J.A., Pomerinke, M.A. and French, J.D.. 1993. Multiyear evaluation of the effects of Nosema locustae (Microsporida: Nosematidae) on rangeland grasshopper (Orthoptera: Acrididae) population density and natural biological controls. Environmental Entomology 22: 489497.Google Scholar
Canning, E.U. 1953. A new microsporidian, Nosema locustae n. sp., from the fat body of the African migratory locust, Locusta migratoria migratorioides (R. and F.). Parasitology 43: 287290.Google Scholar
Ewen, A.B. and Mukerji, M.K.. 1980. Evaluation of Nosema locustae (Microsporida) as a control agent of grasshopper populations in Saskatchewan. Journal of Invertebrate Pathology 35: 295303.Google Scholar
Geddes, A.M.W. 1990. The relative importance of crop pests in sub-Saharan Africa. Natural Resources Institute Bulletin 36: 69 pp.Google Scholar
Germida, J.J., Ewen, A.B. and Onofriechuk, E.E.. 1987. Nosema locustae Canning (Microsporida) spore populations in treated field soils and resident grasshopper populations. The Canadian Entomologist 119: 355360.Google Scholar
Goettel, M.S., Johnson, D.L. and Inglis, G.D.. 1995. The role of fungi in the control of grasshoppers. Canadian Journal of Botany 73 (Suppl. 1): S71–S75.Google Scholar
Habtewold, T., Landin, J., Wennergen, U. and Bergman, K.-O.. 1995. Life table for the Tef grasshopper, Aiolopus longicornis, under laboratory conditions and demographic effects of the pathogen Nosema locustae. Biological Control 5: 497502.Google Scholar
Hardman, J.M. and Smoliak, S.. 1982. The relative impact of various grasshopper species on Stipa-Agropyron Mixed Prairie and Fescue Prairie in southern Alberta. Journal of Range Management 35: 171176.Google Scholar
Henry, J.E. 1971. Experimental application of Nosema locustae for control of grasshoppers. Journal of Invertebrate Pathology 18: 389394.Google Scholar
Henry, J.E. 1972. Epizootiology of infection by Nosema locustae Canning (Microsporida: Nosematidae) in grasshoppers. Acrida 1: 111120.Google Scholar
Henry, J.E. 1981. Natural and applied control of insects by Protozoa. Annual Review of Entomology 26: 4973.Google Scholar
Henry, J.E. and Oma, E.A.. 1981. Pest control by Nosema locustae, a pathogen of grasshoppers and crickets. pp. 573584in Burges, H.D. (Ed.), Microbial Control of Pests and Plant Diseases 1970-1980. Academic Press, New York, NY.Google Scholar
Henry, J.E. and Onsager, J.A.. 1982. Large-scale test of control of grasshoppers on rangeland with Nosema locustae. Journal of Economic Entomology 75: 3135.Google Scholar
Hewitt, G.B. and Onsager, J.A.. 1982. A method of forecasting potential losses from grasshopper feeding on northern mixed prairie forages. Journal of Range Management 35: 5357.Google Scholar
Johnson, D.L. 1989. The effects of timing and frequency of application of Nosema locustae (Microspora: Microsporida) on the infection rate and activity of grasshoppers (Orthoptera: Acrididae). Journal of Invertebrate Pathology 54: 353362.Google Scholar
Johnson, D.L. and Goettel, M.S.. 1993. Reduction of grasshopper populations following field application of the fungus Beauveria bassiana. Biocontrol Science and Technology 3: 165175.Google Scholar
Johnson, D.L. and Henry, J.E.. 1984. Degree of infection of grasshoppers in a Nosema locustae rate trial. Pesticide Research Report, p. 187. Expert Committee on Pesticide Use in Agriculture, Ottawa.Google Scholar
Johnson, D.L. and Henry, J.E.. 1987. Low rates of insecticides and Nosema locustae (Microsporidia: Nosematidae) on baits applied to roadsides for grasshopper (Orthoptera: Acrididae) control. Journal of Economic Entomology 80: 685689.Google Scholar
Johnson, D.L., Olfert, O., Dolinski, M. and Harris, L.. 1996. GIS-based forecasts for management of grasshopper populations in Western Canada. Proceedings of the International Symposium on Agricultural Pest Forecasting and Monitoring, Québec, 10–12 October, 1995, pp. 109112.Google Scholar
Johnson, D.L. and Pavlikova, E.. 1986. Reduction of consumption by grasshoppers (Orthoptera: Acrididae) infected with Nosema locustae Canning (Microsporida: Nosematidae). Journal of Invertebrate Pathology 48: 232238.Google Scholar
Kantack, B. 1988. Biological grasshopper control unsubstantiated. Bulletin S.D. State Univ. Extension. Service (Brookings S.D.), April 4, 1988. Vol. 3: 2.Google Scholar
Lange, C.E. and De Wysiecki, M.L.. 1996. The fate of Nosema locustae (Microsporida: Nosematidae) in Argentine grasshoppers (Orthoptera: Acrididae). Biological Control 7(1): 2429.Google Scholar
Lomer, C.J., Prior, C. and Kooyman, C.. 1997. Development of Metarhizium spp. for the control of grasshoppers and locusts, pp. 265–286 in Goettel, M.S. and Johnson, D.L. (Eds.), Microbial Control of Grasshoppers and Locusts. Memoirs of the Entomological Society 171: 400.Google Scholar
Meneley, J.C. and Sluss, T.P.. 1988. Development of ‘NOLO Bait’ (Nosema locustae) for the control of grasshoppers and locusts. British Crop Protection Council, Brighton Crop Protection Conference, Pests and Diseases - 1988. Vol 2: 597602.Google Scholar
Oma, E.A. and Hewitt, G.B.. 1984. Effect of Nosema locustae (Microsporida: Nosematidae) on food consumption in the differential grasshopper (Orthoptera: Acrididae). Journal of Economic Entomology 77: 500501.Google Scholar
PMRA (Pest Management Regulatory Agency). 1995. Carbofuran. Decision document E95-05, Health Canada, Nepean, ON, Canada. 14 pp.Google Scholar
Prior, C., Lomer, C., Herren, H., Paraïso, A., Kooyman, C. and Smit, J.J.. 1992. The IIBC/IITA/DFPV collaborative research programme on the biological control of locusts and grasshoppers, pp. 818in Lomer, C.J., and Prior, C. (Eds.), Biological Control of Locusts and Grasshoppers. CAB International, Wallingford, UK.Google Scholar
SAS Institute, Inc. 1989. SAS/STAT Version 6, Fourth Edition. Cary, N.C.Google Scholar
Schaalje, G.B., Charnetski, W.A. and Johnson, D.L.. 1986. A comparison of estimators of the degree of insect control. Communications in Statistics: Simulations and Computations 15: 10651086.Google Scholar
Schaalje, G.B., Johnson, D.L. and Van Der Vaart, H.R.. 1992. Application of competing risks theory to the analysis of effects of Nosema locustae and N. cuneatum on development and mortality of migratory locusts. Environmental Entomology 21: 939948.Google Scholar
Streett, D.A. and Henry, J.E.. 1984. Epizootiology of a microsporidium in field populations of Aulocara elliotti and Psoloessa delicatula (Insecta: Orthoptera). The Canadian Entomologist 116: 14391440.Google Scholar