Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-15T13:38:30.002Z Has data issue: false hasContentIssue false

ARTHROPODS OF SPRINGS, WITH PARTICULAR REFERENCE TO CANADA: SYNTHESIS AND NEEDS FOR RESEARCH

Published online by Cambridge University Press:  31 May 2012

H.V. Danks
Affiliation:
Biological Survey of Canada (Terrestrial Arthropods), Canadian Museum of Nature, PO Box 3443, Station D, Ottawa, Ontario, Canada K1P 6P4
D. Dudley Williams
Affiliation:
Division of Life Sciences, Scarborough Campus, University of Toronto, 1265 Military Trail, Scarborough, Ontario, Canada M1C 1A4
Get access

Abstract

Springs include a great variety of habitats, because many possible geological and ecological conditions intersect in any given spring.Available information on the arthropod fauna shows that springs contain a limited number of species of diverse origins, including groundwater, stream, and water-film inhabitants. There is a substantial number of spring-specialist species, many of them in distinctive genera, reflecting many independent invasions of spring habitats by various groups and subgroups of aquatic arthropods. Most of this diversity is present in cold water springs, though smaller numbers of distinctive elements occur in hot or in saline springs. The specialists of coldwater springs tend to show adaptations such as cold stenothermy and limited dispersal, but different species possess different suites of adaptations to the habitat, reflecting their evolutionary history and biology.Faunal differences among springs result from geographical differences (many species, though not as many genera, differ between eastern and western Canada), but within a given region reflect the variety of habitats and microhabitats that exists. Such variety means that except in very broad terms it is not possible to establish workable “definitions” for the range of spring types. Rather, we recommend that biologists adopt a few key descriptors, based on source geometry, water supply, temperature, chemistry, and persistence, to provide useful information about the sites in which they collect. The term “spring” should be used conservatively, to apply only to the area immediately around the point of groundwater issue, because conditions change rapidly farther away from this point.Some needs for the inventory (and protection) of springs and for more extensive sampling are summarized. Further taxonomic studies are required in several characteristic groups. Ecological work on the specialized species confined to springs is likely to be especially instructive.

Résumé

Les sources composent une grande variété d'habitats, parce que plusieurs conditions géologiques et écologiques possibles s'entrecoupent pour chaque source donnée.

Les renseignements disponibles concernant la faune des arthropodes indiquent que les sources contiennent un nombre limité d'espèces d'origines différentes, y compris les habitants des nappes d'eau souterraines, des ruisseaux et des couches d'eau. Il existe un nombre considérable d'espèces spécialistes des sources, plusieurs appartenant à des genres distinctifs, qui indiquent beaucoup d'invasions indépendantes des habitats des sources par des groupes et des sous-groupes d'arthropodes aquatiques différents. Une grande partie de cette diversité est présente dans les sources d'eau froide, malgré que des nombres plus petits d'éléments distinctifs se retrouvent dans les sources chaudes ou saumâtres. Les spécialistes des sources d'eau froide ont tendance à démontrer des adaptations telles que la sténothermie et la distribution limitée, bien que des espèces différentes possèdent des ensembles d'adaptations différents à l'habitat, réflétant ainsi leur histoire évolutionnaire et leur biologie.

Les différences fauniques parmi les sources sont le résultat de différences géographiques (plusieurs espèces, mais pas de genres, diffèrent entre l'est et l'ouest du Canada), tandis que dans une région donnée, elles reflètent la variété d'habitats et de micro-habitats qui existent. Une telle variété signifie que, sauf dans les termes très larges, il n'est pas possible d'établir des «définitions» exploitables pour l'étendue des différentes sortes de sources. Au contraire, nous recommandons que les biologistes adoptent quelques décrivants-clé, basés sur la géométrie, l'approvisionnement en eau, la température, la chimie et la persistance des sources pour fournir les renseignements pertinants concernant les sites dans lesquels ils font la collection. Le terme «source» devrait être utilisé avec modération, s'appliquant seulement à la région immédiatement autour de la sortie d'eau de la nappe souterraine, puisque les conditions changent rapidement à mesure qu'on s'éloigne de ce point.

Quelques besoins pour l'inventaire (et la protection) des sources et pour des échantillonnages plus étendus ont été démontrés en résumé. D'autres études taxinomiques sont nécessaires pour plusieurs groupes caractéristiques. Les travaux écologiques touchant les espèces spécialisées vivant uniquement dans les sources seront probablement très instructifs.

Type
Research Article
Copyright
Copyright © Entomological Society of Canada 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barnard, P.C., and O'Connor, J.P.. 1987. The populations of Apatania muliebris McLachlan in the British Isles (Trichoptera: Limnephilidae). Ent. Gaz. 38: 263267.Google Scholar
Bornhauser, K. 1913. Die Tierwelt der Quellen in der Umgebung Basels. Int. Revue ges. Hydrobiol. Hydrogr., Biol. Suppl. 5. 90 pp. + 2 double pl.Google Scholar
Butler, M.J. IV, and Hobbs, H.H. III., 1982. Drift and upstream movement of invertebrates in a springbrook community ecosystem. Hydrobiologia 89: 153159.Google Scholar
Colbo, M.H. 1991. A comparison of the spring-inhabiting genera of Chironomidae from the Holarctic with those from natural and manmade springs in Labrador, Canada, pp. 169–179 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Desaulniers, D.E., Kaufmann, R.S., Cherry, J.A., and Bentley, H.W.. 1986. 37Cl-35Cl variations in a diffusion-controlled groundwater system. Geochimica et Cosmochimica Ada 50: 17571764.Google Scholar
Downing, R.A., Smith, D.B., Pearson, F.J., Monkhouse, R.A., and Otlet, R.L.. 1977. The age of groundwater in the Lincolnshire limestone, England and its relevance to the flow mechanism. J. Hydrology 33: 201216.Google Scholar
Elliott, J.M. 1971. The life history and biology of Apatania muliebris McLachlan (Trichoptera). Ent. Gaz. 22: 245251.Google Scholar
Erman, N.A. 1984. The mating behavior of Parthina linea (Odontoceridae), a caddisfly of springs and seeps. Series Ent. 30: 131136.Google Scholar
Forester, R.M. 1991. Ostracode assemblages from springs in the western United States: Implications for paleohydrology. pp. 181–201 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Gooch, J.L., and Glazier, D.S.. 1991. Temporal and spatial patterns in mid-Appalachian springs, pp. 29–49 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Harper, P.P. 1980. Phenology and distribution of aquatic dance flies (Diptera: Empididae) in a Laurentian Watershed. Am. midl. Nat. 104: 110117.Google Scholar
Harris, S.C., Carlson, R.B., and Balsbaugh, E.U. Jr., 1981. Ecological Distribution of Insects in Two Streams of the Sandhills of Southeastern North Dakota. North Dakota Insects, Schafer-Post Series 13. vii + 112 pp.Google Scholar
Holsinger, J.R. 1988. Troglobites: the evolution of cave-dwelling organisms. Am. Sci. 76: 147153.Google Scholar
Hynes, H.B.N. 1970. The ecology of running waters. Liverpool University Press, Liverpool, UK. 555 pp.Google Scholar
Jackson, D.J. 1958. Observations on Hydroporus ferrugineus Steph. (Col. Dytiscidae), and some further evidence indicating incapacity for flight. Ent. Gaz. 9: 5559.Google Scholar
Lindegaard, C., and Thorup, J.. 1975. The invertebrate fauna of the moss carpet in the Danish spring Ravnkilde and its seasonal, vertical, and horizontal distribution. Arch. Hydrobiol. 75: 109139.Google Scholar
Lundberg, S., and Müller, K.. 1977. [Hibernation sites of water beetles in the Abisko area, Sweden (Col., Dytiscidae, Hydrophilidae)]. Ent. Tidskr. 98: 143144. [In Swedish, English Summary.]Google Scholar
Mackay, R.J. 1986. Life cycles of Hydropsycheriola H. slossonae and Cheumatopsyche pettiti (Trichoptera: Hydropsychidae) in a spring-fed stream in Minnesota. Am. midl. Nat. 115: 1924.Google Scholar
Minckley, W.L. 1963. The Ecology of a Spring Stream Doe Run, Meade County, Kentucky. Wildl. Monogr. 11. 124 pp.Google Scholar
Minshall, G.W. 1984. Aquatic insect–substratum relationships. pp. 358–400 in Resh, V.H., and Rosenberg, D.M. (Eds.), The Ecology of Aquatic Insects. Praeger, New York, Philadelphia, Eastbourne, Toronto, Hong Kong, Tokyo, Sydney. 625 pp.Google Scholar
Newell, R.L., and Minshall, G.W.. 1978. Life history of a multivoltine mayfly, Tricorythodes minutus: An example of the effect of temperature on the life cycle. Ann. ent. Soc. Am. 71: 876881.Google Scholar
Nielsen, A. 1950. Notes on the genus Apatidea MacLachlan. With descriptions of two new and possibly endemic species from the springs of Himmerland. Ent. Meddr 25: 384404.Google Scholar
Nielsen, A. 1951. Spring fauna and speciation. Verh. int. Verein. theor. angew. Limnol. 11: 261263.Google Scholar
Norton, R.A., Williams, D.D., Hogg, I.D., and Palmer, S.C.. 1988. Biology of the oribatid mite Mucronothrus nasalis (Acari: Oribatida: Trhypochthoniidae) from a small coldwater springbrook in eastern Canada. Can. J. Zool. 66: 622629.Google Scholar
Pinder, L.C.V. 1986. Biology of freshwater Chironomidae. A. Rev. Ent. 31: 123.Google Scholar
Pritchard, G. 1991. Insects in thermal springs, pp. 89–106 in Williams, D.D., and Danks, H. V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Quate, L.W., and Vockeroth, J.R.. 1981. Psychodidae. pp. 293–300 in Manual of Nearctic Diptera, Vol. 1. Res. Brch Agric. Can. Monogr. 27. 674 pp.Google Scholar
Resh, V.H. 1983. Spatial differences in the distribution of benthic macroinvertebrates along a springbrook. Aquat. Insects 5: 193200.Google Scholar
Ring, R.A. 1991. The insect fauna and some other characteristics of natural salt springs on Saltspring Island, British Columbia, pp. 51–61 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Roughley, R.E., and Larson, D.J.. 1991. Aquatic Coleoptera of springs in Canada, pp. 125–140 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Sinclair, B.J., and Marshall, S.A.. 1986. The madicolous fauna in southern Ontario. Proc. ent. Soc. Ont. 117: 914.Google Scholar
Smith, I.M. 1991. Water mites (Acari: Parasitengona: Hydrachnida) of spring habitats in Canada, pp. 141–167 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Solem, J.O. 1985. Norwegian Apatania Kolenati (Trichoptera: Limnephilidae): Identification of larvae and aspects of their biology in a high-altitude zone. Ent. scand. 16: 161174.Google Scholar
Stern, M.S., and Stern, D.H.. 1969. A limnological study of a Tennessee cold springbrook. Am. midl. Nat. 82: 6282.Google Scholar
Thorup, J. 1966. Substrate type and its value as a basis for the delimitation of bottom fauna communities in running waters. Spec. Publ. Pymatuning Lab. Ecol, Univ. Pittsburgh 4: 5974.Google Scholar
Thorup, J., and Lindegaard, C.. 1977. Studies on Danish springs. Folia Limnol. Scand. 17: 715.Google Scholar
Tilly, L.J. 1968. The structure and dynamics of cone spring. Ecol. Monogr. 38: 169197.Google Scholar
Vaillant, F. 1959 a. The Thaumaleidae (Diptera) of the Appalachian mountains. Jl N.Y. ent. Soc. 67: 3137.Google Scholar
Vaillant, F. 1959 b. The larvae of three nearctic Diptera of the family Psychodidae. Jl N.Y. ent. Soc. 67: 3947.Google Scholar
van Everdingen, R.O. 1991. Physical, chemical, and distributional aspects of Canadian springs, pp. 7–28 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Verdonshot, P.F.M., and Schot, J.A.. 1986. Macrofaunal community types in helocrene springs. Rept. Rijksinst. natuurbehaer. 1986: 85103.Google Scholar
Ward, J.V., and Dufford, R.G.. 1979. Longitudinal and seasonal distribution of macroinvertebrates and epilithic algae in a Colorado springbrook-pond system. Arch. Hydrobiol. 86: 284321.Google Scholar
Wiggins, G.B., and Mackay, R.J.. 1978. Some relationships between systematics and trophic ecology in nearctic aquatic insects, with special reference to Trichoptera. Ecology 59: 12111220.Google Scholar
Wilhm, J.L. 1970. some aspects of structure and function of benthic macroinvertebrate populations in a spring. Am. midl. Nat. 84: 2035.Google Scholar
Williams, D.D. 1983. Biological Survey of Canada (Terrestrial Arthropods). National survey of freshwater springs. Bull. ent. Soc. Can. 15(1): 3034.Google Scholar
Williams, D.D. 1991. Life history traits of aquatic arthropods in springs, pp. 63–87 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Williams, D.D., and Danks, H.V. (Eds.). 1991 a. Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Williams, D.D., and Danks, H.V. (Eds.). 1991 b. Arthropods of springs: Introduction, pp. 3–5 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Williams, D.D., Danks, H.V., Smith, I.M., Ring, R.A., and Cannings, R.A.. 1990. Freshwater springs: A national heritage. A brief prepared by the Biological Survey of Canada (Terrestrial Arthropods). Bull. ent. Soc. Can. 22(1), Suppl. 9 pp.Google Scholar
Williams, D.D., and Hogg, I.D.. 1988. Ecology and production of invertebrates in a Canadian coldwater spring–springbrook system. Holarctic Ecol. 11: 4154.Google Scholar
Williams, D.D., Januszczak, C.C., and Williams, N.E.. 1991. Habitat and resource partitioning among caddisfly larvae in a coldwater spring. Proc. 6th Int. Conf. on Trichoptera (Lodz, Poland). In press.Google Scholar
Williams, N.E. 1991. Geographical and environmental patterns in caddisfly (Trichoptera) assemblages from coldwater springs in Canada, pp. 107–124 in Williams, D.D., and Danks, H.V. (Eds.), Arthropods of Springs, with Particular Reference to Canada. Mem. ent. Soc. Can. 155. 217 pp.Google Scholar
Young, F.N., and Longley, G.. 1976. A new subterranean aquatic beetle from Texas (Coleoptera: Dytiscidae-Hydroporinae). Ann. ent. Soc. Am. 69: 787792.Google Scholar