‘The nervous system in its activity is no longer such a mystery to us as it once was’, boasted the German philosopher Friedrich Albert Lange in 1877.Footnote 1 This was in large part, according to Lange, thanks to the ‘latest brain research’ of the Austrian psychiatrist and anatomist Theodor Meynert.Footnote 2 In barely over a decade after joining the medical faculty at the University of Vienna, Meynert had been able to demonstrate, as far as Lange was concerned, that consciousness was no more than ‘a function of the cortex’, the self was ‘nothing but the fusion of the sense-perceptions’, and the soul was ultimately a ‘fiction’.Footnote 3
That Meynert’s research on the brain and nerves had an impact not just on medicine but also on the philosophy of the mind and the ‘history of materialism’ is readily apparent from Lange’s enthusiastic statements.Footnote 4 What this paper seeks to answer is why. What about Meynert’s work made it cogent and compelling? What about it seemed capable of dispelling the mystery of the nervous system and dispensing with the unique inwardness of the mind?Footnote 5 Part of the answer, I argue, lies with Meynert’s images of the brain’s material and the collocation of its fleshy, fibrous inner stuff with the interiority of the mind.
If, as the title of this Special Issue suggests, there are things capable of catching the soul, then one of the first places to look would seem to be inside the brain. This is not at all obvious; at least, it was not always.Footnote 6 But one of the reasons it would seem so now is in no small part thanks to the imaginative work of Theodor Meynert in the latter third of the nineteenth century. Even though many already maintained that if there was a soul it had to be seated inside the brain, Meynert made it all the more evident and all the more inevitable that not only was the soul embedded in the fleshy pulp of brain matter but also inextricably stuck there. By delineating various ‘fibre-systems’ in the brain and nerves, then deducing their different functions on the basis of their winding ‘pathways’ [Bahnen], Meynert elaborated new shapes and textures inside the brain and by doing so, he elaborated, indeed insinuated, the fleshed-out functions of the mind.Footnote 7 Following the ‘tracks’ of fibre running through the tissues of the brain, he extrapolated their function as such, that is, material conduits holding the brain together and keeping its various parts intact. But even as he imagined these fibres as pathways or tracks inside the brain, he co-extended them and co-located them as pathways somehow equally inside the mind.
I argue that Meynert’s initial success with his models of brain anatomy and nerve physiology had to do with a combination of his techniques of dissection and his tactics of description. By scraping away and pulling apart rather than strictly slicing or cutting across the cerebral material, he was able to visualise its fibrous composition and unravel its tracts of tissue as if tracing out different paths. Likewise, he reinforced this image of its winding interior by describing the tissue in terms of strings, threads, bands and cords. Even though neither these terms nor the techniques were original to Meynert alone, he combined them in new ways to deepen the sense of the material interior of the brain, and with it, to substantiate the image of the interiority of the mind.
To help make this point, I draw on the later works of the philosopher Gaston Bachelard, particularly what he called the ‘material imagination’.Footnote 8 I propose, however, that Bachelard’s distinction between science and the imagination can be seen to founder somewhat on the case of Meynert who, despite his reliance on images of the material, managed to build up on this very basis the scientific object of the mind and contribute thereby to the ‘objective-making’ of psychiatric knowledge.Footnote 9 Put differently, although Bachelard’s notion of the material imagination may help account for the historical persuasiveness of Meynert’s research, it fails – albeit in a revealing manner – to address the historical fact that Meynert’s work succeeded both as an expression of the material imagination and the activity of an anatomical science.
1 Meynert, Anatomist and Psychiatrist
Theodor Meynert became one of the first leaders of psychiatry as a clinical academic discipline on the basis of dissecting dead human brains. To some, this may seem puzzling. Why would a psychiatrist bother with dissection? In fact, Meynert was not trained as a psychiatrist since there was little of such available in the medical curriculum of the 1850s.Footnote 10 Instead, he studied principally the teachings and techniques of pathological anatomy, practising how to cut open dead bodies and inspect the different tissues for signs of disease from one of the most skilled physicians of the discipline, Carl von Rokitansky. Indeed, Rokitansky along with Rudolf Virchow helped introduce pathological anatomy as a discipline to the medical curriculum.Footnote 11 Still, this does not directly answer why Meynert’s skill in dissecting post-mortem human tissue would help him later to lead psychiatry at the university level. That requires a brief digression on the state of the field around the time Meynert earned his medical degree in 1861.
That year the physician Wilhelm Griesinger published a new and expanded edition of his textbook on psychiatry, in which he emphatically argued for the need to study the symptoms and causes of mental illness strictly on the basis of brain diseases.Footnote 12 Reacting against a certain strain of physicians, or ‘alienists’, who often managed patients in relatively large asylums, Griesinger called for a set of sweeping reforms that would incorporate many asylums and asylum-managers into nearby university-clinics and medical faculties so as to foster research on the somatic, neuropathological aspects of mental illness rather than to let the patients allegedly languish under the so-called ‘asylum-fathers’.Footnote 13 Predictably, Griesinger’s demands for brain research and asylum reform met with considerable resistance, but in 1865 he earned the chance to put some of his ideas to work. He was appointed to the first academic chair of psychiatry and nervous diseases established at the University of Berlin and promptly set about lobbying for the institutional and pedagogical reforms which he believed would give psychiatry a rightful place alongside other specialties considered part of a new scientific medicine.Footnote 14
Only three years into his appointment Griesinger died. Although he had been able to carry out several of the reforms, including the creation of new research-oriented clinics in various universities, he did not contribute as much in the way of original research on the specific anatomical causes of mental illness.Footnote 15 However, he had galvanised a new generation in such a pursuit, and one of the young physicians so motivated by Griesinger’s ambitious vision was Theodor Meynert. Where Griesinger may have neglected to pinpoint the precise relationship between brain disease and mental illness, Meynert excelled.Footnote 16 It was here in connection with forwarding psychiatric research on the basis of neuropathology that Meynert conspicuously led the way in the latter half of the nineteenth century, helping shape the future of the discipline through students such as Carl Wernicke, August Forel and Sigmund Freud.Footnote 17
The year Griesinger was appointed to the new chair in Berlin, Meynert joined the medical faculty in Vienna as a lecturer on ‘The Structure and Function of the Brain and Spinal Cord’.Footnote 18 For several years, he had worked as an assistant physician at the Imperial Asylum, where he also performed autopsies on the patients who died there. As a result, he developed his skill in pathological anatomy with a specific focus on the brain and nervous tissues. Now in the position as instructor as well as clinical pathologist, he was groomed by Rokitansky, who by then had become University Rector, to lead research on the brain from within the ranks of the academy.Footnote 19 In a short time, he was appointed to the new chair of psychiatry in 1870, the first such position in the entire Austro-Hungarian Empire and only the second after Griesinger in all of German-speaking Europe.Footnote 20
Meynert’s academic success and ultimately his leadership of the new anatomically oriented psychiatry, later dubbed ‘brain psychiatry’,Footnote 21 hinged precisely on his ability to dissect post-mortem human tissue and to detect signs of disease, or structural damage and organic decay, that would suggest the neuropathological basis of mental illness. The fact that he became a psychiatrist on this basis, not strictly by any specialty training but by forging and melding his own formation from a general education in medicine and pathological anatomy, underscores that Meynert was able to play an instrumental role in giving psychiatry new shape, steering it to become in his words ‘an exact psychiatric science’.Footnote 22
2 Connecting Fibre-Systems
Meynert’s leadership of the new academic discipline of psychiatry was due not only to his institutional authority but also his continued anatomical and pathological study of the nervous system. If his accelerated rise in the academy was in part thanks to Rokitansky’s patronage, it was equally in recognition of his penetrating research on the brain and nerves, specifically, his delineation of three kinds of nerve fibres comprising what he called the projection, callosal and association fibre-systems.Footnote 23 Although there has been a tendency to credit Meynert somewhat exclusively for the differentiation of fibres in the brain, his delineation of their functions indisputably shaped neuro-anatomical and -physiological research in the 1870s and 1880s.Footnote 24 Why this was so is the question driving this section.
I argue that while neither his method of dissection nor most of his anatomical descriptions was completely original, the way he was able to connect what he saw inside the brain with an image of what he described as ‘inside’ the mind worked precisely because of his combination of material and metaphorical techniques. In what follows, I will analyse two of Meynert’s earliest publications, one from the same year he joined the medical faculty in Vienna and the other a case history from the following year, 1866, which he initially delivered as a presentation to the Imperial-Royal Society of Physicians.Footnote 25 These two works represent a critical window on Meynert’s early development of his theory of brain function, although they are often overlooked with few exceptions in relation to his larger body of texts published after he became the full Professor of Psychiatry in 1870.Footnote 26 In order to appreciate the effectiveness of his research, however, these early publications merit special attention, particularly as they provide some of his most vivid and detailed descriptions of the brain’s composition. To start, I will introduce some of the basic features of the first publication on the ‘Anatomy of the Cortex’, culminating in his brief sketch of how consciousness emerged from within the brain. Then, I will shift to discuss his ‘Case of a Speech Disturbance’, paying special attention to his elaboration of language functions along discrete pathways of brain fibre.
2.1 Anatomy of the Cortex
From the opening lines of his chapter on cerebral anatomy, which appeared in a textbook of psychiatry by his colleague Maximilian Leidesdorf in 1865, Meynert laid out the fundamental aim of brain research for psychiatrists, namely, to discern the separate forms of mental disturbance from a more general variety of mental disorder, or insanity [Blödsinn]. He spoke of different ‘organs’ inside the brain which gave rise to basic mental representations [Vorstellungen] in ‘central parts’ [Centraltheile] of the cortex. But the lesson he drew was that damage to one part did not necessarily entail damage to all. Some aspects of the mind, or what he referred to collectively as the ‘life of ideas’ [Vorstellungsleben], could remain completely intact despite the fact that some of its ‘intermediary organs’ [vermittelnden Organe] were destroyed. The result might be a certain degree of ‘strangulation’ [Abschnürung] or cutting off of specific ‘idea-centres’ [Vorstellungscentren] but overall the life of the mind remained ‘undisturbed’.Footnote 27
In this serpentine first sentence, Meynert was already making a claim to the basic principle of specificity, that is, the specificity of organs, even parts of organs, in relation to the specificity of disease. Such principle of mutual organic-pathological specificity was critical to Meynert and others hoping to demonstrate the scientific merit of psychiatric research when allied with the anatomical-pathological study of the brain.Footnote 28 If certain parts of the brain serving certain ‘idea-centres’ of the mind could be cut off or ‘strangulated’ from the rest, without being affected, then not only did this indicate an important division of brain function but also a degree of separation between certain mental disturbances and all-out mental illness.Footnote 29 In other words, such specificity potentially expanded the remit of psychiatric research from conspicuous mental disorder to virtually any disturbance distally affecting the mind.Footnote 30 It was a pivotal part of the bid to make psychiatry scientific, to make it ‘exact’ and ‘precise’.Footnote 31 What I want to focus on, though, is how Meynert managed it, that is, how he developed the thesis of such specificity with respect to the brain and nerves. As a clue, the key lay in the latter. Nerve fibres were for Meynert the critical link to understanding brain function.Footnote 32 Following their paths was prelude to finding their purpose.
To appreciate Meynert’s emphasis on the role of nerve fibres inside the brain, one need look no farther than the full title of his chapter, ‘Anatomy of the Cortex as the Carrier of the Life of Ideas and its Pathways of Connection with the Sensory Surfaces and Moving Masses’.Footnote 33 For Meynert, the outer layer of the brain, the cortex, contained or carried out the life of ideas or mental representations. But those ideas formed there only with the help of specific pathways that connected the cortex to the rest of the nervous system. Only because of pathways connecting the brain to the rest of the body, and indeed to the world, were ideas able to form at the outer limits of the nervous system in the ‘grey bed’ of cortical tissue covering the brain.Footnote 34 ‘Anatomical pathways’ [anatomische Bahnen], therefore, were the essential meld of structure and function.Footnote 35 They formed the basis in which the life of the mind was carried, or better, carried out, through the life of the brain.Footnote 36
But how could Meynert determine such activity or connectivity in dead brain tissue? What qualified anyway as a pathway? To understand this requires a closer inspection of his method of dissection. And the method that helped Meynert most to discern such path-like structures was known as Abfaserung or ‘de-fibering’.Footnote 37 Using a pair of tweezers or a needle, he gently scraped away the soft tissue of the brain in order to expose its fibrous interior. Initially practised by Karl Friedrich Burdach in the early decades of the nineteenth century, it was gradually abandoned by most anatomists because it demanded immense patience and skill to pull apart the fragile strands of tissue without damaging or severing them.Footnote 38 Meynert, however, considering Burdach’s research of ‘the most essential value’, mastered the technique.Footnote 39 Because few others practised it by the 1860s, he was able to detect and depict different features inside the brain, specifically long tracts of fibre, arguing that they constituted both a ‘morphological’ and ‘physiological connection’, that is, both the structures of material support and functional communication.Footnote 40 It was not simply that Burdach’s technique revealed to Meynert the brain was made up of fibre-like paths (or path-like fibres), but rather by cutting or ‘de-fibering’ the brain this way, he effectively shaped or ‘re-fibered’ it thus. The act of cutting into the brain material was also a way of re-constituting it.Footnote 41
If Meynert’s technique of dissecting the brain was in part productive of its path-like appearance, so was his technique of describing the material tissue. While the de-fibering method enabled him to follow out the strands of tissue deep into the brain and back out onto its cortical surface, then his means of depicting those strands and their trajectories helped him delineate their functions. Out of the ‘thicket’ of fibre deep inside the ‘inner core’ or ‘pith’ [innere Gewebe] of the brain, he detected different bundles or sheaves [Bündel] of ‘thread-like’ [fädenformige] fibres that came together like ‘cords’ [Kette] or bands of string and then ‘projected’ [projicirt] along different ‘lines’ [Züge or Projectionslinien] through the brain.Footnote 42 By their many ramifications and radiations, like ‘streams of light’ or ‘branches’ of trees, these ‘wandering masses of fibre’ [wendende Fasermasse] culminated or were ‘filled out’ [Erfüllung] across the ‘surface of the brain-mantle’ [Fläche der Hirnmantel]. Taken together, such branching thread-like fibres wove a ‘web’ [Gewebe] that Meynert collectively referred to as the ‘connecting systems’ [verknüpfendenen Systems] of the brain and nerves, later designated as the projection, association and callosal fibre-systems.Footnote 43
The novelty of Meynert’s research hinged on this delineation. Specifically, it hinged on a more fundamental designation of fibres as pathways with different purposes. Others before him had also identified fibres in the brain, but the key difference was that he imaginatively fleshed them out and traced them deep inside the tissue. Both materially and discursively, he elaborated on them and he elaborated in them. For even though the language of fibres and paths was already part of what the historian of medicine Erna Lesky called the ‘new plastic’ anatomical vocabulary, Meynert re-shaped that plastic imagery to new ends.Footnote 44 In describing the system of fibres confined to the cortex, for example, he proclaimed them as the ‘morphological substrate’ of all connections between images and ideas, memories and judgments, indeed, all the connections that ever ‘entered’ the ‘contents of consciousness’.Footnote 45 These were the critical ‘associations’ of ideas which comprised the mind and ‘became conscious’ or were ‘made conscious’ once they were pulled ‘like a thread’ across its ‘threshold’.Footnote 46
This imagery of connecting fibres, branches and threads was integral to Meynert’s account of how both the brain and mind worked, and the imagery itself worked because it blurred the difference between material form and mental function.Footnote 47 It intimated a distinction between inner and outer, centre and periphery and lower and higher, but like lines without spatial dimension, only direction, the image of fibres potentially flattened these distinctions. Thread-like, they seemed able to pull thoughts across some subconscious threshold. Only it was never clear which were the threads, the fibres or the thoughts themselves, and what was pulling what. But even if such imagery was ambiguous, it was nevertheless useful. Like the technique of dissection, Meynert’s tactics of description were in part constitutive of the phenomenon. Yet like the tissue itself, these tactical images were not easily pulled apart.
For Meynert, such enmeshed imagery helped to flesh out not only the material composition of the brain but also to predict its lines of decomposition. Just as the nerve fibres carried out the contents of the mind along thread-like paths, those fibres, like threads, could come undone. And when they did, the fabric of the mind would unravel.
2.2 Meynert’s Case Study
In 1866, Meynert published his first case history based on a presentation given before the Imperial-Royal Society of Physicians earlier that year.Footnote 48 It would be one of the first demonstrations of how psychiatrists could make use of anatomical dissection of the brain to account for an isolated mental disturbance in terms of fibre pathways. Although it was initially hailed as one of the first anatomical descriptions of the trajectory of the auditory nerve from the inner ear through the midbrain and finally to the outer cortex, it is generally less acknowledged as one of the first clinical descriptions of a new type of language disorder.Footnote 49
A young woman, twenty-three years of age, had fallen ill due to what appeared to have been constricted blood flow in her aorta. In particular, she had trouble speaking or what Meynert described as the ‘inhibition of verbal expression’.Footnote 50 For example, she repeatedly mispronounced the word for ‘cough’ (Hutzen instead of Husten) and confused the words for ‘head’ and ‘hand’. When asked to repeat the word ‘hand’, she said ‘yellow’ instead.Footnote 51 It was as if, according to Meynert, she not only had trouble speaking but also to some extent hearing. He noticed especially how often she failed to realise that what she said made little sense and ‘bore absolutely no relation to what she was trying to say’.Footnote 52 Instead of recognising her ‘erroneous verbal expressions’, they entirely ‘escaped’ [entschülpften] her attention, as though they had never entered consciousness.Footnote 53
Two weeks later, the patient died, affording Meynert the opportunity to perform an autopsy on her brain. What he found was a series of soft spots in a swollen area of discoloured tissue near the Sylvian fissure, a deep groove of tissue separating the frontal and the temporal lobes.Footnote 54 He dubbed this inner fold of tissue the ‘sound field’ [Klangfeld] or the cortical area where mental representations of sounds, including speech, were formed.Footnote 55 Either the patient’s trouble with speaking had been a result of her no longer being able to form the correct mental representations of the sounds of words or the mental representations she had were no longer connected with her memories, specifically the ‘memory-images’ [Erinnerungsbilder] of those sounds of words.Footnote 56
Normally during the course of speech, he explained, sounds of words entered the body through nerve endings lining the labyrinth of the inner ear. They activated the nerves by way of ‘vibrations’ [Schwingungen], becoming ‘sensory impressions’ [Sinneseindrücke].Footnote 57 These impressions or sensations then travelled along the pathways of fibres which converged in a ‘bundle’ [Bündel] that Meynert dubbed the ‘acoustic cord’ [Acusticusstrang].Footnote 58 Along the way, they turned into ‘images’, or the basic mental units of sound [Klangbilder].Footnote 59 As these ‘sound-images’ continued along the pathways of fibre, they eventually arrived at the ‘sound-field’. There they were connected via different fibres to ‘word-images’ [Wortbilder] as well as ‘memory-images’.Footnote 60 In sum, this was the anatomical route of ‘speech comprehension’ [Sprachverständniss].Footnote 61 But in the case of the young woman, a part of that route had been disrupted. Part of the ‘sensory chain’ [sensorische Kette] in her brain was ‘disconnected’.Footnote 62
A similar case of speech disorder had already been described in France by the anatomist-cum-anthropologist Paul Broca. In 1861, he declared to have discovered the ‘seat’ of articulate speech in the third convolution of the left frontal cortex.Footnote 63 The patient, Monsieur Leborgne, was nicknamed ‘Tan’ because that was virtually the only sound he could make. When he died Broca inspected Leborgne’s brain in search of signs of damage or disease and identified a relatively isolated area of decayed tissue near the posterior region of the frontal cortex, across from the Sylvian fissure. This was where, he deduced, the ‘faculty’ of speech resided, that is, the mental capacity to execute and coordinate the movement in the muscles of the face, mouth and throat to produce coherent spoken language. The distinction was critical for Broca to uphold between language in general and the function of articulation, for basically it amounted to a difference between mind and muscle. While he ruled out the possibility of direct muscular paralysis, he attempted to avoid the rough equation of language tout court with just this one area of the brain. Instead, his anatomical ‘localisation’ was more nuanced. He only proposed that this area was responsible for the planning and execution of movements related to speaking, that is, the ‘ideational’ basis of articulation.Footnote 64
Not only was this nuance critical to avoid offending the sensibilities of some of the French élite, but it also exposed a certain conceptual gap that Meynert would try to fill. Whereas for Broca, the speech disorder that came to be known as ‘aphasia’ involved strictly the problem of articulation, for Meynert it could also entail problems with comprehension. At least, he believed that was the case with the young woman. Not only did she fail to express herself properly, but she failed to realise her failure. The fact that her errors ‘escaped’ her notice suggested to Meynert that, on some level, she never really ‘heard’ them in the first place.Footnote 65
At this point it should be emphasised that Meynert did not appear to be proposing a whole new language disorder but rather an added dimension to the aphasia Broca had already described. The reason to draw this distinction is that one of Meynert’s students, Carl Wernicke, would later re-parcel Meynert’s emphasis on the sensory aspect of speech perception into a new and distinct form of aphasia separate from Broca’s. In 1874, Wernicke published a large study featuring several of his own case histories of aphasia, including some which involved Broca’s aphasia of articulation, re-classified as ‘motor aphasia’, and a new type he characterised as ‘sensory’.Footnote 66 From the beginning of his paper, he was very clear about his reliance on Meynert’s research, openly declaring, ‘[E]verything of value in the present study is ultimately based on Meynert’s work.’Footnote 67 Nevertheless, for reasons which would require a more dedicated discussion, Wernicke earned much of the credit.Footnote 68
Even though Meynert did not firmly differentiate between Broca’s aphasia and his patient’s speech disorder, the fact that he emphasised the sensory aspects of her dysfunction is an important clue to how he drew on a general philosophical understanding of the mind to elaborate the functions of the brain. If the language of fibres, cords and strings was by and large borrowed from Burdach and others, Meynert’s references to ‘memory-images’ and the ‘threshold of consciousness’ reflected an ample infusion of the latest variety of ‘associationism’ promulgated by philosophical psychologists such as Gustav Fechner. By the middle of the nineteenth century, the theories of mental association had passed through at least two centuries of revision from Locke and Hume to Condillac and Comte before coming to Meynert probably through the writings of Lotze and Fechner.Footnote 69 But it is likely that Fechner helped most of all to shape how German-speaking physicians and philosophers, physiologists and psychologists, thought about the mind in the late nineteenth century.Footnote 70
Fechner, though adapting such terms as ‘memory-images’ from Johann Friedrich Herbart, Kant’s successor in Königsberg, reworked many of the themes of associationism in his own Elements of Psychophysics published in 1860.Footnote 71 Arguing that all psychological phenomena could be understood in the same way as mechanical phenomena, Fechner nevertheless deferred submitting to an outright materialism. Rather, he preferred to view the mind as the ‘resultant’ function of the brain but not ontologically equivalent to its material structures.Footnote 72 His fellow colleague at Leipzig, Rudolf Hermann Lotze, had similarly attempted to sidestep a strict materialism in his own textbook published in 1858, Medical Psychology, or the Physiology of the Mind. Footnote 73 He also defended both physiological and psychological research but strictly on the grounds of a ‘neo-Kantian’ distinction between the phenomenal ‘appearances’ or manifestations of mental activity and the ‘essence’ of the mind itself. While there was no way for science to know anything about the true essence of the mind, or even soul (in German, it was the same word, Seele), its activities and functions remained completely within bounds.Footnote 74
Fechner and Lotze were both reacting to some of the cruder varieties of scientific materialism still circulating since the liberals’ defeat in 1848. With their more circumspect and self-critical language about the mind and its relation to the brain, they provided an outlet for researchers like Meynert to continue with their work.Footnote 75 Thanks to Lotze and Fechner, Meynert was careful just enough to avoid collapsing the life of the mind into the life of the brain, preferring to frame the latter as the material ‘vehicle’ of the former, or the material ‘ground’ from which emerged the functions of the mind. Ideas and mental representations were ‘carried out’ or conducted by fibres which ‘allowed for’ their association.Footnote 76 This was tentative language not only of a young academic aspirant but also an anatomically oriented psychiatrist who appreciated the philosophical and theological perils of roughly equating the mind and the brain. Still, despite such rhetorical restraint, Meynert did not avoid insinuating some degree of material continuity between the inner life of the mind and the inner structure of the brain.Footnote 77 And the principal reason for this lay in his vivid elaboration of the fibres and the nerves, which, because he followed them like threads, led him to imagine the ideas themselves as such, indeed the whole of mental life as such: a web woven from the brain [Hirnschenkel], a mere ‘physiological tabula rasa’ made up of connections and paths.Footnote 78
But this philosophical confusion was crucial to his clinical construction.Footnote 79 Meynert considered all the higher mental functions as combined products of sensations and movements, at least the ‘images’ thereof, and so he accounted for his patient’s speech disorder as both a matter of articulation and comprehension. She failed to speak properly not only because, like ‘Tan’, she lacked the requisite ‘articulatory centre’ but also because she lacked certain ‘ideas of sound’ [Klangvorstellungen].Footnote 80 This was most evident, Meynert maintained, because she failed to catch her own mistakes, that is, she no longer ‘heard’ her own incoherence. Either that, or it was because of the discoloured swelling of tissue in the ‘field of sound’. In point of fact, the clinical-psychological description and the anatomical-pathological delineation were mutually reinforcing. They seemed to be self-implicating and entangled, which was part of what made Meynert’s model compelling. The language of a mental disconnect prefigured that of a material one. What Meynert designated as ‘loose threads’ [losen Fäden] of fibre inside the brain extended to and were insinuated by some sense of unravelling connections somehow, somewhere ‘inside’ the mind. What this meant in terms of a more distributed and interconnected theory of cognition was of paramount importance. For, even by diffusing mental functions thus, along fibre nets, mesh, or webs, Meynert effectively reconstituted a material image of the mind.
3 Bachelard’s Material Imagination
The basic appeal of Meynert’s imagery of the brain fibres as specialised pathways of the mind drew on a powerful intuition, historical and cultural, that whatever the mind was it had to do with making connections and those connections were to some degree internal, taking place in some ‘inner’ sort of space.Footnote 81 It was only in the mid-seventeenth century that such an inner space of the mind came to be elaborated within the inner solid tissues of the brain, above all, the intricate nerve fibres.Footnote 82 Two centuries later, Meynert built upon and extended this intuition by further delineating and articulating the fibres in terms of separate functional systems and then collating them as the material concretion of a connection-making mind. He deepened the appeal of this basic image of the mind as one fleshed out inside the brain by imaginatively following it farther, retracing its wandering threads and recreating an even more intricate and seemingly more precise anatomical-physiological portrait of how the mind was made up, and broken down, along the lines of the brain.
The draw of his work, therefore, had to do with its level of depth and detail, or at least the intimation that he had been able to explore farther and see further into the brain. And the success of such an intimation of insight and depth depended in part on his description of the material, indeed, the ‘imagination of the material’. This phrase comes from the French philosopher of science Gaston Bachelard who in the late 1930s attempted what he called a ‘psychoanalysis’ of scientific knowledge and the poetic imagination.Footnote 83 He claimed that all objective knowledge was forged by way of a kind of ‘repression’ and ‘rupture’ against a more primitive state of mind, which he believed to be, though intrinsic to literary creativity, the source of scientific error and epistemological obstacles.Footnote 84 Without fully subscribing to such a division, however, I propose to develop Bachelard’s exploration of what he called the ‘images of material’, particularly, the material imagination of ‘the inside’, in relation to Meynert’s imagery of the brain.Footnote 85
Scholars have analysed Meynert’s rather extensive use of metaphors, especially in his later work. The historian of science Michael Hagner discusses, for example, Meynert’s comparison of the nervous system to the Austro-Hungarian Empire, in which the cortex represented the ‘capital’ and the rest of the brain, ‘provinces’.Footnote 86 Elsewhere, Hagner notes, Meynert described the brain as a ‘colony of living conscious beings’.Footnote 87 Such comparisons were not purely for provocation. In the case of the colony metaphor, Meynert insisted it was a literal description. The brain really was in a significant sense made up of a collection of different forms of conscious life.Footnote 88 The medical historian Cornelius Borck draws similar conclusions. When Meynert compared the human nervous system to the ‘feelers’ and ‘tentacles’ of the amoeba and jellyfish, these were not ‘mere’ metaphors.Footnote 89 For Meynert, they denoted actual anatomical features common to both the complex human being and some of the simplest of life forms.Footnote 90 They expressed, in Borck’s words, the ‘physiological principle’ that all life was ‘organized the same from the inside out’.Footnote 91 But, as Borck points out, even such ostensible equivalence could do polemical work. Indeed, no matter the degree of anatomical verisimilitude or morphological literalism, these shared terms implied a broader ‘explanatory strategy’, and that was to identify the biological basis of the mind.Footnote 92
Despite penetrating investigation of Meynert’s political, biological and technological comparisons, few scholars have analysed Meynert’s metaphors of the material itself. This is what I have endeavoured to do, focusing on his tactics of describing the nerve fibres in terms of ‘thread-like’ paths carrying out mental images in the brain and, like material threads, susceptible of loosening and tearing not only in the brain but equally in the mind. And it was this problematic preposition ‘in’ that Meynert, despite attempting to disperse it with his emphasis on fibres, could not ultimately escape, if only because of the basic spatial language of the brain composed of an inner core and outer crust, and the inner fibres condensed into bundles and bands, branches and roots with a ground beneath and surface above.Footnote 93 Throughout his work, there was this back-and-forth, up-and-down, in-and-out propulsion. No matter how carefully he elaborated the mind’s functions therein, there always remained this problematic image of ‘in’.
For Bachelard, images of interiority were basic to the imagination of material. In the second volume of his Earth series published in 1948, he described how certain dream-like states of mind, or ‘reveries’, before certain objects elicited the imagination of refuge and repose. Whether by contemplating the hidden centre of a seed or the creeping depths of roots, whether wandering the labyrinthine channels of an underground cave or pondering the undisclosed insides of one’s own body, all these were ‘material images’ inviting the reverie of intimacy, depth and interiority.Footnote 94 But they were not only suggestive. In some sense, these images were equally metaphorical and material. They conveyed a meaning beyond themselves and yet always seemed to implicate themselves in that meaning.Footnote 95
Meynert invoked such material-metaphors of depth and interiority in his language of the wandering fibre-masses in the brain and winding pathways in the mind, using them in turn as anatomical elaborations and psychological explanations. While evocative of woven fabric or growing roots, these images of fibre, thread, limb and stem, were nevertheless literal, material, anatomical designations of the brain’s ‘knotty’ makeup.Footnote 96 And yet, they functioned as the imagined conduits for the material elaboration of the mind he was cautious to provide. Material images of ‘mental images’ [Bilder], they worked less by explanation than by insinuation. That was what made Meynert’s morphological model of the brain so powerful, so object-oriented, that it seemed to efface the difference between anatomy and image, material and metaphor.Footnote 97 The fibre, both as a form of physical connection and mental conduction, served to unite structure and function, brain and mind.
And what if Bachelard were right? What if Meynert’s images of the material could not help but be insinuated into the language of the mind? Would this mean he was captive to the purported universal dynamics of the imagination? Or was he perhaps simply redeploying historical discursive conventions of framing the mind in terms of the brain? I am not persuaded of either. Each scenario fails to account for the particular impact Meynert had on subsequent models of the brain and, for that matter, on philosophical ideas about the mind. One could be forgiven for imputing such an impact to a confluence of the institutional clout of science, the intellectual currents of materialism, and the dogged if desperate hope of delivering humanity from mental illness. But that would arguably still miss part of the point and much of the punch to Meynert’s particular theories about the functions of fibre-paths. No doubt, these other connections were indissociable from the coherence of Meynert’s work, but what I want to suggest is that his anatomical-physiological imagination of pathways in the brain re-entrenched a much older intuition about the ‘innerness’ of the mind.
While Bachelard believed that the image of interiority was integral to the unconscious, others have recently argued that it is itself an historical artefact of modern thought. In as much as it may seem inevitable to think of mental features as ‘inner’, even this has cultural roots, as it were, tracing back at least to Augustine, if not before.Footnote 98 If so, Bachelard’s alleged distinction between objective science and the poetic imagination would need modification. Although he maintained that features of the imagination were intrinsic to the mind, he also claimed by contrast that the development of scientific knowledge demanded a degree of breaking with the imagination: ‘When we turn inwards upon ourselves we turn aside from truth.’Footnote 99 Objective knowledge was attainable only by explicitly resisting the ‘false weight’ of ‘familiar experiences’.Footnote 100 Even though the ‘intuition of inwardness, of intimacy, so strongly connected with the substantialist intuition claims to explain well-defined, scientific phenomena’, the practice of scientific objectivity entails that one ‘must constantly denounce this claim to inner depth’.Footnote 101 Such denunciation and detachment corresponded on an individual level to the large-scale ‘epistemic ruptures’ Bachelard described in the history of science. Fundamentally, it hinged on a ‘dialectic’ between object and image and between science and the unconscious.Footnote 102 But if the image of mental interiority is itself a derivative of history, not a universal of the mind, Meynert’s work can be seen as both part of the historical project of anatomical science to elaborate the brain and an extension of the material imagination to ‘catch’ the mind from inside.
4 Conclusion
That Meynert was only partly successful in this undertaking is equally important. Towards the end of his career and especially after his death, former colleagues voiced suspicion concerning his methods and models. Some accused him of not basing his theories on empirical observations but rather ‘fantastic constructions’.Footnote 103 Others wondered whether his emphasis on dissection might have a harmful influence by distracting psychiatrists from their clinical duties.Footnote 104 Finally, perhaps the most barbed critique was encapsulated in the smear word, ‘neuromythology’ [Hirnmythologie].Footnote 105 According to many, that was the essence of Meynert’s professed anatomical teaching. Where he pretended to science, he tended toward myth.
Such an apparent failure of Meynert’s project, however, underscores the question why his research was effective in the first place. If anything, it exposes all the more the historical contingency of his theory of brain function and its circumscribed salience. And yet, some of the basic elements of that theory, mythological or not, have of late found new credence in the forms of neurological connectionism, ‘brain hodology’ and ‘connectomics’.Footnote 106 While that potential relationship between Meynert’s model of the brain and the present falls outside the scope of this paper, it remains instructive to consider how his theory could arouse such antipathy and yet command renewed respect. Part of the answer, I argue, lies in his rhetorical-anatomical imagination – specifically his material images of the brain’s depth and mind’s interiority.
Perhaps we cannot get away from this material language of bundles and paths. Some sort of connecting threads, weaving an ‘inner’ and ‘outer’, some image of deep roots holding together an ‘upper’ and ‘lower’: they have become part of our very concepts about how concepts work.Footnote 107 As Meynert delineated the fibres and imagined their paths with these material images, he was said to have ‘en-souled the brain’, or conversely, to have ‘em-brained the soul’.Footnote 108 Either way, he animated the one as much as he substantiated the other, and no more by ‘mere’ anatomy than by ‘mere’ metaphor but rather through a ‘material-discursive circuit’Footnote 109 belonging at once to science and the imagination.