No CrossRef data available.
Published online by Cambridge University Press: 29 April 2004
This paper addresses the positioning and identification of markers for 3D tracking within Virtual Reality (VR) applications. Many VR applications need to know the position and the orientation of the body of users in order to make possible intuitive user interactions as stereoscopy calculation, navigation control or gesture dialog. This work is based on infrared capture device that does not need to be physically dependent with tracked objects. During an acquisition, some markers could be occluded by objects or not visible by some cameras. This paper proposes a new solution that finds the position of the occluded markers or at least limits the consequences of oclusion. The aim is to minimise the effects of oclusion by an optimal distribution of the markers on the objects. It also uses a fast and robust markers identification algorithm. The global approach is based on the association of markers distribution with their identification, in order to optimise the number of visible markers.