Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-25T19:17:37.807Z Has data issue: false hasContentIssue false

Optimisation multi-objectifs à base de métamodèle pour desapplications en mise en forme des métaux

Published online by Cambridge University Press:  20 December 2010

Get access

Abstract

Pour appliquer les algorithmes d’optimisation multi-objectifs à des problèmes de mise enforme des métaux très coûteux en temps de calcul, nous étudions le couplage del’algorithme génétique NSGA-II proposé par Deb à un métamodèle inspiré de la méthode desdifférences finies sans maillage de Liszka et Orkisz. Nous soulignons l’importanced’améliorer itérativement le métamodèle au cours des itérations d’optimisation, et lapossibilité de déterminer avec précision des fronts optimaux de Pareto des problèmesmulti-objectifs étudiés en moins d’une centaine de calculs.

Type
Research Article
Copyright
© AFM, EDP Sciences 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Références

K. Deb, Multi-Objective Optimisation using Evolutionary Algorithms, John Wiley & Sons, Chichester, 2001
Emmerich, M., Beume, N., Naujoks, B., An EMO algorithm using the hyper volume measure as selection criterion, Evolutionary Multi-Criterion Optimization 3410 (2005) 6276 CrossRefGoogle Scholar
Beume, N., Naujoks, B., Emmerich, M., SMS-EMOA : Multi-objective selection based on dominated hypervolume, Eur. J. Res. 181 (2007) 16531669 Google Scholar
Krok, J., An Extended Approach to Error Control in Experimental and Numerical Data Smoothing and Evaluation Using the Meshless FDM, Meshfree Computational Mechanics 11 (2002) 913945 Google Scholar
K. Pawan, S. Nain, K. Deb, A Multi-Objective Optimization Procedure with Successive Approximate Models, KanGAL Report Number 2005002
K. Pawan, S. Nain, K. Deb, A Multi-Objective Search and Optimization Procedure with Successive Approximate Models, KanGAL Report Number 2004012
Goal, T., Vaidyanathan, R., Haftka, R.T., Shyy, W., Queipo, N.V., Tucker, K., Response surface approximation of Pareto optimal front in multi-objective optimization, Comput. Methods Appl. Mech. Eng. 196 (2007) 879893 CrossRefGoogle Scholar
K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A Fast and Elitist Multi-Objective Genetic Algorithm : NSGA-II, KanGAL Report Number 200001
M. Emmerich, B. Naujoks, Metamodel-Assisted Multiobjective Optimization with Implicit Constraints and its Application in Airfoil Design, International Conference and Advanced Course ERCOFTAC, Athens, Greece, 2004
Ingarao, G., Lorenzo, R.D., F. Micari. Internal pressure and counter-punch action design in Y-shaped tube hydroforming processes : A multi-objective optimisation approach, Comput. Struct. 87 (2009) 591602 CrossRefGoogle Scholar
M. Emmerich, A. Giotis, M. Özdemir, T. Bäck, K. Giannakoglou, Metamodel-assisted evolution strategies,International Conference on parallel problem solving from nature Springer, Berlin, Germany, 2002
Emmerich, M., Giannakoglou, K., Naujoks, B., Single- and Multiobjective Evolutionary Optimization Assisted by Gaussian Random Field Metamodels, IEEE Trans. Evol. Comput. 10 (2006) 421439 CrossRefGoogle Scholar
M. Emmerich, B. Naujoks, Metamodel-Assisted Multiobjective Optimization Algorithms and their application in Airfoil Design, in Proc. 5th Int. Conf. Adaptive Computing in Design and Manufacture VI (ACDM), Springer, London, 2004, pp. 249–260
M.H.A Bonte, L. Fourment, T.T. Do, A.H. Van den Boogaard, J. Huétink. Optimisation of metal forming processes using Finite Element simulations : A sequential approximate optimization algorithm and its comparision to other algorithms by application to forging, Structural and Multidisciplinary optimization
Liszka, T., Orkisz, J., The finite difference method at arbitrary irregular grids and its application in applied mechanics, Comput. Struct. 11 (1980) 8395 CrossRefGoogle Scholar
M.T.T. Do, Optimisation de forme en forgeage 3D, Ph.D. thesis, Mines ParisTech.
Breitkopf, P., Naceur, H., Rassineux, A., P. Villon. Moving Least squares response surface approximation : Formulation and metal forming applications, Comput. Struct. 83 (2005) 14111428 CrossRefGoogle Scholar
K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable Test Problems for Evolutionary Multi-Objective Optimization, in A. Abraham, L. Jain, R. Goldberg (éds.), Evolutionary Multiobjective Optimization. Theoretical Advances and Applications, Springer, USA, 2005, pp. 105–145
K. Deb, L. Thiele, M. Laumanns, E. Zitzler, Scalable Multi-Objective Optimization Test Problems, in Congress on Evolutionary Computation (CEC) Piscataway, New Jersey, May 2002, Vol. 1, pp. 825–830
Deb, K., Multi-objective genetic algorithms: Problem difficulties and construction of test problems, Evol. Comput. J. 7 (1999) 205230 CrossRefGoogle ScholarPubMed