Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T01:21:41.806Z Has data issue: false hasContentIssue false

On the future of controllable fluid film bearings

Published online by Cambridge University Press:  09 June 2011

Ilmar Ferreira Santos*
Affiliation:
Dept of Mechanical Engineering, Technical University of Denmark, Building 404, 2800 Lyngby, Denmark
*
aCorresponding author: [email protected]
Get access

Abstract

This work gives an overview of the theoretical and experimental achievements of mechatronics applied to fluid film bearings. Compressible and uncompressible fluids are addressed. Rigid and elastic (deformable) bearing profiles are investigated. Hydraulic, pneumatic, magnetic and piezoelectric actuators are used. The ideas of combining control techniques, informatics with hydrodynamic, thermo-hydrodynamic, elasto-hydrodynamic and thermo-elasto-hydrodynamic lubrication techniques are carefully explored in this paper, considering theoretical as well as experimental aspects. The main goal of using controllable fluid film bearings is to improve the overall machine performance by: controlling the lateral vibration of rigid and flexible rotating shafts; modifying bearing dynamic characteristics, such as stiffness and damping properties; increasing the rotational speed ranges by enhancing damping and eliminating instability problems, for example, by compensating cross-coupling destabilizing effects; reducing start-up torque and energy dissipation in bearings; compensating thermal effects. It is shown that such controllable fluid film bearings can act as “smart” machine components and be applied to rotating and reciprocating machines with the goal of avoiding unexpected stops of plants, performing rotor dynamic tests and identifying model parameters “on site”. Emphasis is given to the controllable lubrication (hybrid and active) applied to different types of oil film bearings under different lubrication regimes, i.e., as tilting-pad journal bearings, multi-recess journal bearings and plain journal bearings. After a comprehensive overview of the theoretical and experimental technological advancements achieved in university laboratories, the feasibility of industrial applications is highlighted, trying to foresee the future trends of such mechatronic devices.

Type
Research Article
Copyright
© AFM, EDP Sciences 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

E.H. Maslen, Magnetic bearings – theory, design and application to rotating machinery, New York, USA, Springer, 2009
Palazzolo, A.B., Lin, R.R., Alexander, R.M., Kascak, A.F., Montague, J., Test and theory for piezoelectric actuators – active vibration control of rotating machinery, Trans. ASME, J. Vibr. Acoust. 113 (1991) 16775 CrossRefGoogle Scholar
H. Ulbrich, J. Althaus, Actuator design for rotor control. In 12th biennial ASME conference on vibration and noise, 1989, pp. 17–21
Deckler, D.C., Veillette, R.J., Braun, M.J., Choy, F.K., Simulation and control of an active tilting-pad journal bearing, STLE Trib. Trans. 47 (2000) 440458 CrossRefGoogle Scholar
Wu, A., Cai, Z., de Queiroz, M.S., Model-based control of active tilting-pad bearings, IEEE/ASME Trans. Mechatroni. 12 (2007) 689695 CrossRefGoogle Scholar
J. Althaus, Eine aktive hydraulische Lagerung für Rotorsysteme, Düsseldorf, Germany: VDI-Verlag, 1993
I. Ferreira Santos, Aktive Kippsegmentlagerung – Theorie und Experiment, Düsseldorf, Germany, VDI-Verlag, 1993
Ferreira Santos, I., On the adjusting of the dynamic coefficients of tilting-pad journal bearings, STLE Trib. Trans. 38 (1995) 700706 CrossRefGoogle Scholar
M.J. Goodwin, T. Boroomand, C.J. Hooke, Variable impedance hydrodynamic journal bearings for controlling flexible rotor vibrations, In 12th biennial ASME conference on vibration and noise, 1989, pp. 261–267
H.G. Rylander, M.J.T. Carlson, C.R. Lin, Actively controlled bearing surface profiles – theory and experiment, in ASME Tribology symposium, 1995, pp. 11–14
Sun, L., Krodkiewski, J.M., Experimental investigation of dynamic properties of an active journal bearing, J. Sound Vib. 230 (2000) 11031117 CrossRefGoogle Scholar
J.M. Krodkiewski, G.J. Davies, Modelling a new three-pad active bearing, in: Proc. ASME Turbo Expo 2004, pp. 1–9
Ferreira Santos, I., Russo, F.H, Tilting-pad journal bearings with electronic radial oil injection, ASME J. Tribol. 120 (1998) 583594 CrossRefGoogle Scholar
Ferreira Santos, I., Nicoletti, R., Scalabrin, A., Feasibility of applying active lubrication to reduce vibration in industrial compressors, ASME J. Eng. Gas Turbine Power 126 (2004) 888894 Google Scholar
Haugaard, A.M., Ferreira Santos, I., Elastohydrodynamics applied to active tilting-pad journal bearings, ASME J. Tribol. 132 (2010) 021702-1–021702-10 CrossRefGoogle Scholar
D.E. Bently, T. Eldridge, J. Jensen Mol, Active controlled hydrostatic bearings for a new generation of machines, in: ASME/IGTI international gas turbine and aeroengine congress and exhibition, Munich, Germany, 2000, 2000-GT-354
I. Ferreira Santos, A Fuerst, Grosse Axiallager mit Hybridschmierung – Theoretische und experimentelle Betrachtungen, in: Schwingungen in rotierenden Maschinen, edited by H. Irretier, R. Nordmann, H. Springer, Vieweg Verlag, Braunshweig, Germany, 2003, Vol. 6, pp. 51–60
Martin, J.K., Parkins, D.W., Theoretical studies of a continuously adjustable hydrodynamic fluid film bearing. ASME Trans, J. Tribol. 124 (2002) 203211 CrossRefGoogle Scholar
Martin, J.K., Parkins, D.W., Testing of a large adjustable hydrodynamic journal bearing, STLE Trib. Trans. 44 (2001) 559566 CrossRefGoogle Scholar
Martin, J.K., A mathematical model and numerical solution technique for a novel adjustable hydrodynamic bearing. Int. J. Numer. Meth. Fluids 28 (1999) 845864 3.0.CO;2-O>CrossRefGoogle Scholar
Stolarski, T., Self-lifting contacts: from physical fundamentals to practical applications, Proc. Institution of Mechanical Engineers, Part C: J. Mech. Eng. Sci. 220 (2006) 12111218 Google Scholar
Heinrichson, N., Ferreira Santos, I., Fuerst, A., The influence of injection pockets on the performance of tilting-pad thrust bearings: part I – theory, ASME Trans. J. Tribol. 129 (2007) 895903 CrossRefGoogle Scholar
Heinrichson, N., Fuerst, A., Ferreira Santos, I., The influence of injection pockets on the performance of tilting-pad thrust bearings: part II – comparison between theory and experiment, ASME Trans. J. Tribol. 129 (2007) 904912 CrossRefGoogle Scholar
J. Althaus, P. Stelter, B. Feldkamp, H. Adam, Aktives hydraulisches Lager für eine Schneckenzentrifuge, Schwingungen in rotierenden Maschinen, H. Irretier, R. Nordmann, (éd.) Springer, Vieweg Verlag 1993, Vol. 2, pp. 28–36
Hagemeister, W.H.N., Auslegung von hochdynamischen servohydraulischen Antrieben für eine Aktive Frässpindellagerung, O+P Ölhydraulik und Pneumatik, 44 (2000) 23 Google Scholar
Ferreira Santos, I., Nicoletti, R., Scalabrin, A, Feasibility of applying active lubrication to reduce vibration in industrial compressors, ASME Trans. J. Eng. Gas Turbine Power 126 (2004) 888894 Google Scholar
Ferreira Santos, I., Watanabe, F.Y., Lateral dynamics and stability analysis of a gas compressor supported by hybrid and active lubricated multirecess journal bearing, J. Brazilian Soc. Mech. Sci. Eng. 28 (2006) 486496 Google Scholar
Estupinan, E.A., Ferreira Santos, I., Linking rigid multibody systems via controllable thin fluid films, Tribol. Int. 42 (2009) 14781486 CrossRefGoogle Scholar
Ferreira Santos, I., Nicoletti, R, THD analysis in tilting-pad journal bearings using multiple orifice hybrid lubrication. ASME Trans. J. Tribol. 121 (1999) 892900 CrossRefGoogle Scholar
S. Morosi, I. Ferreira Santos, Stability analysis of flexible rotors supported by hybrid permanent magnet – gas bearings, in: PACAM XI – 11th Pan-American Congress of Applied Mechanics, January 4–8, Foz de Iguacu, PR – Brazil, 2010, pp. 1–8
Haugaard, M.A., Ferreira Santos, I., Multi-orifice active tilting-pad journal bearings – harnessing of synergetic coupling effects, Trib. Int. 43 (2010) 13741391 CrossRefGoogle Scholar