Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T05:19:15.570Z Has data issue: false hasContentIssue false

Numerical study of the inner canalization geometry optimizationin a milling tool used in micro quantity lubrication

Published online by Cambridge University Press:  08 August 2014

A. Duchosal*
Affiliation:
Laboratoire de Tribologie et Dynamique des Systèmes, 58 rue Jean Parot, 42023 Saint-Étienne, France
R. Serra
Affiliation:
INSA Centre Val de Loire, Laboratoire de Mécanique et Rhéologie, 3 rue de la Chocolaterie, 41000 Blois, France
R. Leroy
Affiliation:
Polytech’ Tours, Laboratoire de Mécanique et Rhéologie, 7 avenue Marcel Dassault, 37200 Tours, France
*
a Corresponding author:[email protected]
Get access

Abstract

This study focused on numerical analysis of the parameters influencing the oil mist flow(MQL) outside a rotating tool, in non-contact configuration. This approach was a mandatorystep for the parameter optimizations before taking into account the material removing. Theoptimization of inner canalization geometries to a milling tool was performed to transferthe oil mist. The Reynolds Average Navier Stokes (RANS) and Lagrangian equations were usedto simulate the oil mist flow inside the canalizations by integrating the standardk-ε turbulence model with the STAR CCM+ commercial software. The dynamic numericalcalculation was used to optimize the inner canalizations of a milling tool. Because of theparticular external tool shape, the micro spray cooling is not guaranteed to reach thecutting edge. The external tool geometry, the inlet pressure, the shape and theorientation of the inner canalization geometries in the tool body and the rotation speedhave significant influence on the lubrication efficiency. The main goal of this study wasto improve this efficiency as function of these parameters. Thus, parameter sets givinggood lubrication were determinate for a type of tool.

Type
Research Article
Copyright
© AFM, EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aoyama, T., Development of a Mixture Supply System for Machining with Minimal Quantity Lubrication, CIRP Ann. Manuf. Technol. 51 (2002) 289292 CrossRefGoogle Scholar
Dhar, N.R., Islam, M.W., Mithu, M.A.H., The influence of minimum quantity of lubrication (MQL) on cutting temperature, chip and dimensional accuracy in turning AISI 1040 steel, J. Mater. Process. Technol. 171 (2006) 9399 CrossRefGoogle Scholar
Lopez de Lacalle, L.N., Angulo, C., Lamikiz, A., Sanchez, J.A., Experimental and numerical investigation on the effect of spray cutting fluids in high speed milling, J. Mater. Process. Technol. 172 (2006) 1115 CrossRefGoogle Scholar
Vikram Kumar, C.R., Kesavan Nair, P., Ramamoorthy, B., Performance of TiCN and TiAlN tools in machining hardened steel under dry, wet and minimum fluid application, Int. J. Machining Machinability Mater. 3 (2008) 133143 CrossRefGoogle Scholar
Attanasio, A., Gelfi, M., Giardini, C., Remino, C., Minimal quantity lubrication in turning: effect on tool wear, Wear 260 (2006) 333338 CrossRefGoogle Scholar
Kamata, Y., Obikawa, T., High speed MQL finish turning of inconel 718 with different coated tools, J. Mater. Process. Technol. 192 (2007) 281286 CrossRefGoogle Scholar
Obikawa, T., Kamata, Y., Asano, Y., Nakayama, K., Otieno, A.W., Micro-liter lubrication machining of inconel 718, Int. J. Machine Tools Manuf. 48 (2008) 15991604 CrossRefGoogle Scholar
Obikawa, T., Kamata, Y., Shinozuka, J., High speed grooving applying MQL, Int. J. Machine Tools Manuf. 46 (2006) 18541861 CrossRefGoogle Scholar
Emami, M., Sadeghi, M.H., Sarhan, A.A.D., Investigating the effects of liquid atomization and delivery parameters of minimum quantity lubrication on the grinding process of Al2O3 engineering ceramics, J. Manuf. Process. 15 (2013) 374388 CrossRefGoogle Scholar
Gandarias, A., Lopez de Lacalle, L.N., Aizpitarte, X., Lamikiz, A., Study of the performance of the turning and drilling of the austenitic stainless steels using two coolant techniques, Int. J. Machining Machinability Mater. 3 (2008) 117 CrossRefGoogle Scholar
Zeilmann, R.P., Weingaertner, W.L., Analysis of temperature during drilling of Ti6A14V with minimal quantity of lubricant, J. Mater. Process. Technol. 179 (2006) 124127 CrossRefGoogle Scholar
Rahman, M., Kumar, A.S., Salam, M.U., Experimental evaluation on the effect of minimal quantities of lubricant in milling, Int. J. Machine Tool Manuf. 42 (2002) 539547 CrossRefGoogle Scholar
Li, X.X., Liu, C.H., Leung, D.Y.C., Lam, K.M., Recent progress in CFD modeling of wind field and pollutant transport in street canyons, Atmospheric Environment 40 (2006) 56405658 CrossRefGoogle Scholar
Kitagawa, A., Murai, Y., Yamamoto, F., Two-way coupling of Eulerian-Lagrangian model for dispersed multiphase flows using filtering functions, Int. J. Multiphase Flow 27 (2001) 21292153 CrossRefGoogle Scholar
Buwa, V.V., Deo, D.S., Ranade, V.V., Eulerian-Lagrangian simulations of unsteady gas-liquid flows in bubble columns, Int. J. Multiphase Flow 32 (2006) 864885 CrossRefGoogle Scholar
Naterer, G.F., Milanez, M., Venn, G., On the Lagrangian/Eulerian modeling of dispersed droplet inertia: Internal circulation transition, J. Colloid Interface Sci. 291 (2005) 577584 CrossRefGoogle ScholarPubMed
Peiner, E., Balke, M., Doering, L., Form measurement inside fuel injector nozzle spray holes, Microelectron. Eng. 86 (2009) 984986 CrossRefGoogle Scholar
Grigoriadis, D.G.E., Kassinos, S.C., Lagrangian particle dispersion in turbulent flow over a wall mounted obstacle, Int. J. Heat Fluid Flow 30 (2009) 462470 CrossRefGoogle Scholar
Subramaniam, Sh., Lagrangian-Eulerian methods for multiphase flows, Prog. Energy Comb. Sci. 39 (2013) 215245 CrossRefGoogle Scholar
Andrews, M.J., O’Rourke, P.J., The multiphase particle-in-cell (MP-PIC) method for dense particulate flows, Int. J. Multiphase Flow 22 (1996) 379402 CrossRefGoogle Scholar
Duchosal, A., Serra, R., Leroy, R., Static numerical simulation of oil mist particle size effects on a range of internal channel geometries of a cutting tool used in MQL strategy, Int. J. Eng. Sci. Innov. Technol. 3 (2014) 4359 Google Scholar
Duchosal, A., Leroy, R., Vecellio, L., Louste, C., Ranganathan, N., An experimental investigation on oil mist characterization used in MQL milling process, Int. J. Adv. Manuf. Technol. 66 (2012) 10031014 CrossRefGoogle Scholar
A.B. Taylor, Physicochemical processes and the formulation of dissymmetry models, Ph.D. Thesis, The Pennsylvania State University, 2006
Zhao, Y., Lieber, B.B., Steady inspiratory flow in a model symmetric bifurcation, Trans. ASME 116 (1994) 488496 Google Scholar
Liu, Y., So, R.M.C., Zhang, C.H., Modeling the bifurcating flow in a human lung airway, J. Biomech. 35 (2002) 465473CrossRefGoogle Scholar