Published online by Cambridge University Press: 09 July 2008
This paper is devoted to the description of a new full MLS SPH modelisation of rupture of thin shell filled with fluid and the prediction on consecutive fluid loss though the fracture. The paper first presents an efficient and controlled model for elastoplastic rupture of thin shells by a single layer of SPH balls. The proposed model controls as well static and dynamic instabilities using two basic ingredients: additional stress points to control the hourglass like instabilities and extend the Monhagan viscosity control method to shear and bending components of the generalized efforts. The fluid is modeled using standard SPH fluid model. The interaction is modeled using pin-balls method which is very natural in this type of formulation. Application examples are presented.