Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T18:29:50.221Z Has data issue: false hasContentIssue false

Mechanics of osteoporotic trabecular bone

Published online by Cambridge University Press:  22 November 2012

Maxime Bérot
Affiliation:
LTDS, UMR 5513, École Centrale de Lyon, 36 Av. Guy de Collongue, 69134 Écully, France MSSMAT, UMR 8579, École Centrale Paris, Grande Voie des Vignes, 92295 Chatenay-Malabry, France
Jean-Charles Aurégan
Affiliation:
B2OA, UMR 7052, Université Paris Diderot, 10 avenue de Verdun, 75010 Paris, France
Laurianne Imbert
Affiliation:
LTDS, UMR 5513, École Centrale de Lyon, 36 Av. Guy de Collongue, 69134 Écully, France
Hélène Magoariec
Affiliation:
LTDS, UMR 5513, École Centrale de Lyon, 36 Av. Guy de Collongue, 69134 Écully, France
Elisa Budyn
Affiliation:
UIC Department of Mechanical Engineering, University of Illinois at Chicago, 842 West Taylor Street, Chicago, IL 60607, USA
Frédéric Zadegan
Affiliation:
B2OA, UMR 7052, Université Paris Diderot, 10 avenue de Verdun, 75010 Paris, France
Didier Hannouche
Affiliation:
B2OA, UMR 7052, Université Paris Diderot, 10 avenue de Verdun, 75010 Paris, France
Morad Bensidhoum
Affiliation:
B2OA, UMR 7052, Université Paris Diderot, 10 avenue de Verdun, 75010 Paris, France
Thierry Hoc*
Affiliation:
LTDS, UMR 5513, École Centrale de Lyon, 36 Av. Guy de Collongue, 69134 Écully, France
*
a Corresponding author:[email protected]
Get access

Abstract

Osteoporosis is a disease characterized by a loss of bone density and an altered bonearchitecture. These modifications lead to an increased risk factor for bone fracture,particularly of the femoral neck. This disease can be explained by a disorder in the boneremodeling process which is triggered by the apparition of micro-cracks within the bone.According to Frost’s theory [1], these micro-cracksappear for a specific local strain threshold. Thus, the knowledge of the microarchitectureand quality of trabecular bone is essential to determine this local strain threshold. Thispaper studied the mechanical trabecular bone behavior of 43 patients diagnosed asosteoporotic whose femoral heads were replaced by hip prosthesis. From each patient, acylinder-shaped of trabecular bone samples was cored. Each sample was scanned by X-raymicro-tomography before a compression test in order to reconstruct a reliableFinite-Element (FE) model of the bone architecture in Abaqus. The force-displacementcurves were recorded for all the samples and calibrated by the experimental responses. Theforce-displacement numerical curves were adjusted to the experimental ones, by modifyingthe tissue microscopic mechanical behavior. This process leads to the determination of thelocal strain threshold responsible for triggering the bone remodeling process.

Type
Research Article
Copyright
© AFM, EDP Sciences 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Frost, H.M., Straatsma, C.R., Bone remodeling dynamics, Plast. Reconstr. Surg. 33 (1964) 196206 CrossRefGoogle Scholar
Budyn, E., Hoc, T., Jonvaux, J., Fracture strength assessment and aging signs detection in human cortical bone using an X-FEM multiple scale approach, Comp. Mech. 42 (2008) 579591 CrossRefGoogle Scholar
Turner, C.H., Takano, Y., Tsui, T.Y., Pharr, G.M., The elastic properties of trabecular and cortical bone tissues are similar : results from two microscopic measurement techniques, J. Biomech. 32 (1999) 437441 CrossRefGoogle ScholarPubMed
Zysset, P.K., Guo, X.E., Hoffler, C.E., Moore, K.E., Goldstein, S.A., Elastic modulus and hardness of cortical and trabecular bone lamellae measured by nanoindentation in the human femur, J. Biomech. 32 (1999) 10051012 CrossRefGoogle ScholarPubMed
Zysset, P.K., Guo, X.E., Hoffler, C.E., Moore, K.E., Goldstein, S.A., Mechanical properties of human trabecular bone lamellae quantified by nanoindentation, Technol. Health Care 6 (1998) 429432 Google ScholarPubMed
Rho, J.Y., Tsui, T.Y., Pharr, G.M., Elastic properties of human cortical and trabecular lamellar bone measured by nanoindentation, Biomaterials 18 (1997) 13251330 CrossRefGoogle ScholarPubMed
C.C. Ko, W.H. Douglas, Y.S. Cheng, Intrinsic mechanical competence of cortical and trabecular bone measured by nanoindentation and microindentation probes edited by R.M. Hochmuth, N.A. Langrana, M.S. Hefzy, in : Proc. ASME Bioengineering Conference BED-Vol. 29, USA, 1995, pp. 415–416
Weaver, J.K., The microscopic hardness of bone, J. Bone Joint Surg. 48 (1966) 273288 CrossRefGoogle Scholar
Choi, K., Kuhn, J.L., Ciarelli, M.J., Goldstein, S.A., The elastic moduli of human subchondral trabecular, and cortical bone tissue and the size-dependency of cortical bone modulus, J. Biomech. 23 (1990) 11031113 CrossRefGoogle ScholarPubMed
Kuhn, J.L., Goldstein, S.A., Choi, K., London, M., Feldkamp, L.A., Matthews, L.S., Comparison of the trabecular and cortical tissue moduli from human iliac crests, J. Orthop. Res. 7 (1989) 876884 CrossRefGoogle ScholarPubMed
Bini, F., Marinozzi, A., Marinozzi, F., Patanè, F., Microtensile measurements of single trabeculae stiffness in human femur, J. Biomech. 35 (2002) 15151519 CrossRefGoogle Scholar
Ryan, J.C., Williams, J.L., Tensile testing of rodlike trabeculae excised from bovine femoral bone, J. Biomech. 22 (1989) 351355 CrossRefGoogle ScholarPubMed
Rho, J.Y., Ashman, R.B., Turner, C.H., Young’s modulus of trabecular and cortical bone material : ultrasonic and microtensile measurement, J. Biomech. 26 (1993) 111119 CrossRefGoogle Scholar
Williams, J.L., Johnson, W.J.H., Elastic constants of composites formed from PMMA bone cement and anisotropic bovine cancellous bone, J. Biomech. 22 (1989) 673682 CrossRefGoogle Scholar
Ashman, R.B., Rho, J.Y., Elastic modulus of trabecular bone material, J. Biomech. 21 (1988) 177181 CrossRefGoogle Scholar
Helgason, B., Perilli, E., Schileo, E., Taddei, F., Brynjolfsson, S., Viceconti, M., Mathematical relationships between bone density and mechanical properties : A literature review, Clin. Biomech. 23 (2008) 135146 CrossRefGoogle ScholarPubMed
Guidoni, G., Swain, M., Jaeger, I., Nanoindentation of wet and dry compact bone : Influence of environment and indenter tip geometry on the indentation modulus, Philosophical magazine 9 (2010) 553565 CrossRefGoogle Scholar
S.C. Cowin, Bone mechanics handbook, 2nd edition, Informa Healthcare, 2001
Chevalier, Y., Pahr, D., Allmer, H., Charlebois, M., Zysset, P., Validation of a voxel-based FE method for prediction of the uniaxial apparent modulus of human trabecular bone using macroscopic mechanical tests and nanoindentation, J. Biomech. 40 (2007) 33333340 CrossRefGoogle ScholarPubMed
Mc Donnell, P., Harrison, N., Liebschner, M.A.K., Mc Hugh, P.E., Simulation of vertebral trabecular bone loss using voxel finite-element analysis, J. Biomech. 42 (2009) 27892796 CrossRefGoogle ScholarPubMed
Follet, H., Peyrin, F., Vidal-Salle, E., Bonnassie, A., Rumelhart, C., Meunier, P.J., Intrinsic mechanical properties of trabecular calcaneus determined by finite-element models using 3D synchrotron microtomography, J. Biomech. 40 (2006) 21742183 CrossRefGoogle ScholarPubMed
Jaecques, S.V., Van Oosterwyck, H., Muraru, L., Van Cleynenbreugel, T., De Smet, E., Wevers, M., Naert, I., Vander Sloten, J., Individualised, micro CT-based finite element modeling as a tool for biomechanical analysis related to tissue engineering of bone, Biomaterials 25 (2004) 16831696 CrossRefGoogle Scholar
Niebur, G.L., Feldstein, M.J., Yuen, J.C., Chen, T.J., Keaveny, T.M., High-resolution finite element models with tissue strength asymmetry accurately predict failure of trabecular bone, J. Biomech. 33 (2001) 15751583 CrossRefGoogle Scholar
Ladd, A.J.C., Kinney, J.H., Haupt, D.L., Goldstein, S.A., Finite-element modeling of trabecular bone : comparison with mechanical testing and determination of tissue modulus, J. Orthop. Res. 16 (1998) 622628 CrossRefGoogle ScholarPubMed
Hou, F.J., Lang, S.M., Hoshaw, S.J., Riemann, D.A., Hyhrie, D.P., Human vertebral body apparent and hard tissue stiffness, J. Biomech. 31 (1998) 10091015 CrossRefGoogle ScholarPubMed
Beaupré, G.S., Hayes, W.C., Finite element analysis of a three-dimensional open-celled model for trabecular bone, J. Biomech. Eng. 107 (1985) 249256 CrossRefGoogle Scholar
Van Rietbergen, B., Weinans, H., Huiskes, R., Odgaard, A., A new method to determine trabecular bone elastic properties and loading using micromechanical finite-element models, J. Biomech. 28 (1995) 6981 CrossRefGoogle ScholarPubMed
Van Rietbergen, B., Majumdar, S., Pistoia, W., Newitt, D.C., Kothari, M., Laib, A., Ruegsegger, P., Assessment of cancellous bone mechanical properties from micro-FE models based on micro-CT, pQCT and MR images, Technol. Health Care 6 (1998) 413420 Google ScholarPubMed
Bayraktar, H.H., Keaveny, T.M., Mechanisms of uniformity of yield strains for trabecular bone, J. Biomech. 37 (2004) 16711678 CrossRefGoogle Scholar
Charlebois, M., Jirasek, M., Zysset, P.K., A nonlocal constitutive model for trabecular bone softening in compression, Biomech. Model. Mechanobiol. 9 (2010) 597611 CrossRefGoogle ScholarPubMed
Dall’Ara, E., Schmidt, R., Pahr, D., Varga, P., Chevalier, Y., Patsch, J., Kainberger, F., Zysset, P., A nonlinear finite element model validation study based on a novel experimental technique for unducing anterior wedge-shape fractures in human vertebral bodies in vitro, J. Biomech. 43 (2010) 23742380 CrossRefGoogle Scholar
Garcia, D., Zysset, P.K., Charlebois, M., Curnier, A., A three dimensional elastic plastic damage constitutive law for bone tissue, Biomech. Model. Mechanobiol. 8 (2009) 149165 CrossRefGoogle ScholarPubMed
Werner, H.J., Martin, H., Behrend, D., Schmitz, K.P., Schober, H.C., The loss of stiffness as osteoporosis progresses, Med. Eng. Phys. 18 (1996) 601606 CrossRefGoogle ScholarPubMed
Wolfram, U., Wilke, H.J., Zysset, P.K., Valid finite element models of vertebral trabecular bone can be obtained using tissue properties measured with nanoindentation under wet conditions, J. Biomech. 43 (2010) 17311737 CrossRefGoogle ScholarPubMed
Hoc, T., Henry, L., Verdier, M., Aubry, D., Sedel, L., Meunier, A., Effect of microstructure on the mechanical properties of Haversian cortical bone, Bone 38 (2006) 466474 CrossRefGoogle ScholarPubMed
Ulrich, D., Van Rietbergen, B., Weinans, H., Rüegsegger, P., Finite element analysis of trabecular bone structure : a comparison of image-based meshing techniques, J. Biomech. 31 (1998) 11871192 CrossRefGoogle Scholar
Chappard, C., Marchadier, A., Benhamou, C.L., Side-to-side and within-side variability of 3D bone microarchitecture by conventional micro-computed tomography of paired iliac crest biopsies, Bone 43 (2008) 203208 CrossRefGoogle ScholarPubMed
Öhman, C., Baleani, M., Perilli, E., Dall’Ara, E., Tassani, S., F., Baruffaldi, M., Viceconti, Mechanical testing of cancellous bone from the femoral head : Experimental errors due to off-axis measurements, J. Biomech. 40 (2007) 24262433 CrossRefGoogle ScholarPubMed
Morgan, E.F., Keaveny, T.M., Dependence of yield strain of human trabecular bone on anatomic site, J. Biomech. 34 (2001) 569577 CrossRefGoogle ScholarPubMed