Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T23:49:07.518Z Has data issue: false hasContentIssue false

Materials selection for eco-aware lightweight frictionmaterial

Published online by Cambridge University Press:  20 June 2014

A. Mustafa
Affiliation:
Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
M.F.B. Abdollah*
Affiliation:
Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
N. Ismail
Affiliation:
Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
H. Amiruddin
Affiliation:
Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia Centre for Advanced Research on Energy, Universiti Teknikal Malaysia Melaka, Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia
N. Umehara
Affiliation:
Department of Mechanical Science and Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
*
a Corresponding author:[email protected]
Get access

Abstract

In the automotive industry, non-asbestos based components, such as brake pads, have beenin high demand due to environmental and human health concerns. Therefore, the purpose ofthis study is to select an alternative friction material, which is eco-aware lightweight,cost effective, and non-toxic. This will be accomplished using Cambridge EngineeringSelector (CES) Edupack software, embedded within an Eco-Audit Tool. For verification, acomparative study using the Pugh method was also investigated. The results show thatKenaf, which is a commodity plant in Malaysia, is the most suitable alternative frictionmaterial that passes all of the design stages and consumes less energy, compared toasbestos and other potential materials.

Type
Research Article
Copyright
© AFM, EDP Sciences 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, Y., Lai, X., Zhu, P., Wang, W., Mater. Design 27 (2006) 6468 CrossRef
Abdollah, M.F.B., Hassan, R., J. Mech. Eng. Technol. 5 (2013) 1118
Chan, D., Stachpwiak, G.W., Proc. Instit. Mech. Eng. D: J. Automobile Eng. 218 (2004) 953966 CrossRef
P.J. Blau, Compositions, Functions, and Testing of Friction Materials and Their Additives. OAK Ridge National Laboratory Report ORNL/TM 2001/64, Oak Ridge, Tennesse, 2001, pp. 1–29
Eriksson, M., Bergman, F., Jacobson, S., Wear 232 (1999) 163167 CrossRef
Bergman, F., Eriksson, M., Jacobson, S., Wear 299 (1999) 62628
Kim, S., Jang, H., Tribol. Int. 33 (2000) 477484 CrossRef
Ramazzini, C., Call for an International Ban on Asbestos, Environment Resolution 83 (2000) 7981 Google Scholar
Han, L., Huang, L., Zhang, J., Lu, Y., Sci. Technol. 66 (2006) 505513
Yousif, B.F., Nirmal, U., Wong, K.J., Composite 31 (2010) 45144521
Hashmi, S.A.R., Dwivedi, U.K., Navin, G., Wear 262 (2007) 14261432 CrossRef
Acha, B.A., Marcovich, N.E., Reboredo, M.M., J. Polymer Sci. 262 (2005) 736741
Liu, Q., Hughes, M., Composites A: Appl. Sci. Manufact. 39 (2011) 16441652 CrossRef
El-Tayeb, N.S.M., Wear 39 (2008) 223235 CrossRef
Yunhai, M., Shenglong, S., Jin, T., Wei, Y., Yazhou, Y., Jiang, Z., J. Thermoplastic Composite Mater. 26 (2010) 845859
M.F. Ashby, D. Cebon, Teaching Engineering Materials: The CES Edupack. Engineering Department, Cambridge University, 2007, pp. 1−13
J. O’Hare, E. Cope, S. Warde, Five steps to Eco Design, Improving the Environmental Performance of Products through Design. Granta Design Limited, 2011, pp. 1–12
S. Katsuhiro, G. Akira, Y. Satoshi, A. Yuichi, N. Koji, Development of Brake Friction Material, Honda Research and Development Co. Ltd., 1993, pp. 149-161
R.J. Talib, S.S. Mohmad, and K. Ramlan, Selection of Best Formulation for Semi-Metallic Brake Friction Materials Development, Powder Metallurgy, Dr Katsuyoshi Kondoh (Ed.), ISBN:978-953-51-0071-3, InTech. Available from: http://www.intechopen.com/books/powder-metallurgy/ Selection-of-Best-Formulation-for-Semi-Metallic-Brake-Friction-Materials-Development, 2012.
M.G. Jacko, S.K. Rhee, B. Linings, C. Facing, In: M. Grayson, (ed.), Encyclopedia of Composite Materials and Component, John Wiley and Sons, USA, 1995, pp. 144–154
Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P., J. Sound Vib. 267 (2003) 105166 CrossRef
Cueva, G., Sinatora, A., Guesser, W.L., Tschiptschin, A.P., Wear 255 (2003) 12561260 CrossRef
Han, L., Huang, L., Zhang, J., Lu, Y., Compos. Sci. Technol. 66 (2006) 28952906 CrossRef
Yun, R., Lu, Y., Filip, P., Tribology Int. 43 (2010) 20102019 CrossRef
EL-Tayeb, N.S.M., Liew, K.W., Wear 266 (2009) 275287 CrossRef
Bhabani, K.S., Amar, P., Nandan, D., Prasanta, R., Bharat, S.T., J. Eng. Technol. 226 (2012) 439445
M.F. Ashby, D. Cebon, Case studies in material selection, Granta Design Limited, Cambridge, 1996
Kima, Y.C., Cho, M.H., Kim, S.J., Jang, H., Wear 264 (2008) 204210CrossRef