No CrossRef data available.
Article contents
THE TILED CIRCLE PROBLEM
Published online by Cambridge University Press: 31 March 2014
Abstract
How many square tiles are needed to tile a circular floor? Tiles are cut to fit the boundary. We give an algorithm for cutting, rotating and re-using the off-cut parts, so that a circular floor requires $\def \xmlpi #1{}\def \mathsfbi #1{\boldsymbol {\mathsf {#1}}}\let \le =\leqslant \let \leq =\leqslant \let \ge =\geqslant \let \geq =\geqslant \def \Pr {\mathit {Pr}}\def \Fr {\mathit {Fr}}\def \Rey {\mathit {Re}} \pi R^2 + O(\delta R) + O(R^{2/3}) $ tiles, where $R$ is the radius and $\delta $ is the width of the cutting tool. The algorithm applies to any oval-shaped floor whose boundary has a continuous non-zero radius of curvature. The proof of the error estimate requires methods of analytic number theory.
MSC classification
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2014