Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-25T21:19:54.078Z Has data issue: false hasContentIssue false

Surfaces with congruent shadow-lines

Published online by Cambridge University Press:  26 February 2010

CH. Charitos
Affiliation:
Department of Mathematics, University of Crete, Iraklion P.O. Box 470, Greece
Get access

Extract

The aim of this paper is to prove the following

THEOREM. Let M be a C compact and strictly convex surface embedded in the euclidean space E3 or in the hyperbolic space H3. We suppose that all shadow-lines ofM are congruent. Then M is a euclidean 2-sphere or a hyperbolic 2-sphere respectively.

Type
Research Article
Copyright
Copyright © University College London 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

D.W.Carmo, M. Do and Warner, F. W.. Rigidity and Convexity of hypersurfaces in spheres. J. Differential Geometry, 4 (1970), 133144.CrossRefGoogle Scholar
H.Harvey, W. J.. Discrete Groups and Automorphic Functions (A.P., 1977).Google Scholar
M.Milnor, J.. Analytic proofs of the Hairy Ball Theorem. Am. Math. Monthly, 85 (1978), 521524.Google Scholar
Min.Minkowski, H.. Ueber die Koerper konstanter Breite. Gesammelte Abhandlungen, Bd. II, 277279.Google Scholar
S.Spivak, S. M.. A Comprehensive Introduction to Differential Geometry, Vol. III, IV (Publish or Perish Inc., 1975).Google Scholar
Su.Suss, W.. Kennzeichnende Eigenschaften der Kugel als Folgerung eines Brouwerschen Fixpunktsatzes. Comment. Math. Helv., 20 (1947), 6164.CrossRefGoogle Scholar