Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T23:10:28.081Z Has data issue: false hasContentIssue false

Strong shift equivalence of 2 by 2 non-negative integral matrices

Published online by Cambridge University Press:  26 February 2010

Geon Ho Choe
Affiliation:
Department of Mathematics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea, e-maii: [email protected]
Sujin Shin
Affiliation:
Department of Mathematics, Korea Advanced Institute of Science and Technology, Taejon 305-701, Korea
Get access

Abstract

It is known that if A and B are nontriangular 2 × 2 non-negative integral matrices similar over the integers and –tr A ≤det A, then A and B are strongly shift equivalent. Suppose that A and B are 2 × 2 non-negative integral matrices similar over the integers. In this article it is shown that if –2 tr A≤det A <– tr A and if | det A | is not a prime, then A and B are strongly shift equivalent.

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baker, K. A.. Strong shift equivalence and shear adjacency of nonnegative square integer matrices. Linear Algebra Appl., 93 (1987), 131147.CrossRefGoogle Scholar
2.Baker, K. A.. Strong shift equivalence of 2 by 2 matrices of nonnegative integers. Erg. Theory Dyn. Syst., 3 (1983), 501508.Google Scholar
3.Boyle, M.. Shift equivalence and the Jordan form away from zero. Erg. Theory Dyn. Syst., 4 (1984). 367380.Google Scholar
4.Boyle, M.. The stochastic shift equivalence conjecture is false. Conlemp. Math., 135 (1992), 107110.Google Scholar
5.Cuntz, J. and Krieger, W.. Topological Markov chains with dicyclic dimension groups. J. Reine Angew. Math., 320 (1980), 4451.Google Scholar
6.Kim, K. H. and Roush, F. W.. Williams's conjecture is false for reducible subshifts. J. Amer. Math. Soc., 5 (1992), 213215.Google Scholar
7.Lind, D. and Marcus, B.. An Introduction to Symbolic Dynamics and Coding (Cambridge Univ. Press, New York, 1995).CrossRefGoogle Scholar
8.Parry, W. and Williams, R. F.. Block coding and a zeta function for finite Markov chains. Proc. London Math. Soc., 25 (1977), 483495.CrossRefGoogle Scholar
9.Wagoner, J. B.. Classification of subshifts of finite type revisited. Contemp. Math., 135 (1992), 423444.CrossRefGoogle Scholar
10.Williams, R. F.. Classification of subshifts of finite type. Ann. of Math., 98 (1973), 120153; Errata Ann. of Math., 99 (1974), 380 381.Google Scholar
11.Williams, R. F.. Strong shift equivalence of matrices in GL(2, ℤ). Contemp. Math., 135 (1992), 445451.Google Scholar