No CrossRef data available.
Article contents
Speciality of full subalgebras and rational identities in Jordan algebras
Part of:
Jordan algebras
Published online by Cambridge University Press: 26 February 2010
Extract
The Shirshov-Cohn theorem asserts that in a Jordan algebra (with 1), any subalgebra generated by two elements (and 1) is special. Let J be a Jordan algebra with 1, a, b elements of J and let a1, a2, …, an be invertible elements of J such that
Where
are Jordan polynomials. In [2, p. 425] Jacobson conjectured that for any choice of the Pi the subalgebra of J generated by 1, a, b, a1…, an is special.
MSC classification
Secondary:
17C05: Identities and free Jordan structures
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1992
References
1.Essannouni, H.Garijo, P. JiminezKaidi, A. and Palacios, A. Rodriguez. Rational identities in Jordan algebra. Algebras Groups Geom., 5 (1988), 411–420.Google Scholar
2.Jacobson, N.. Structure and representation of Jordan algebras. Amer. Math. Soc. Coll. Publ 39 (Providence, Rhode Island, 1968).Google Scholar
3.Martindale, W. S. and McCrimmon, K.. Imbedding nondegenerate Jordan algebras in semiprimitive algebras. Proc. Amer. Math. Soc., 103 (1988), 1031–1036.CrossRefGoogle Scholar
4.Moreno, J. Martinez. Sobre algebras de Jordan normadas completas. Tesis doctoral (Univ. de Granada, 1977).Google Scholar
5.McCrimmon, K.. Macdonald's theorem with inverses. Pacific J. Math., 21 (1967), 315–325.CrossRefGoogle Scholar
6.McCrimmon, J.. The radical of Jordan algebras. Proc. Nat. Acad. Sci. U.S.A., 62 (1969), 671–678.CrossRefGoogle Scholar