Published online by Cambridge University Press: 29 November 2017
Introduced in Schmidt and Summerer [Parametric geometry of numbers and applications. Acta Arith.140 (2009), 67–91], approximation exponents $\text{}\underline{\unicode[STIX]{x1D711}}_{i},\overline{\unicode[STIX]{x1D711}}_{i}$, $(i=1,2,3)$, attached to points $\boldsymbol{\unicode[STIX]{x1D709}}=(\unicode[STIX]{x1D709}_{1},\unicode[STIX]{x1D709}_{2})$ in $\mathbb{R}^{2}$, give information on Diophantine approximation properties of these points. Laurent [Exponents of Diophantine approximation in dimension two. Canad. J. Math.61 (2009), 165–189] had described all possible quadruples $(\text{}\underline{\unicode[STIX]{x1D711}}_{1},\overline{\unicode[STIX]{x1D711}}_{1},\text{}\underline{\unicode[STIX]{x1D711}}_{3},\overline{\unicode[STIX]{x1D711}}_{3})$ arising in this way. Our emphasis here will be on $\text{}\underline{\unicode[STIX]{x1D711}}_{2},\overline{\unicode[STIX]{x1D711}}_{2}$ and the construction of suitable “$3$-systems”.