No CrossRef data available.
Published online by Cambridge University Press: 26 February 2010
Let K be a finite algebraic extension of the rational number field Q, and let R denote the ring of algebraic integers in K. The algebraic integers in a finite extension field of K form a ring which may be considered as a module over R. The structure of these modules has been entirely determined in Fröhlich [2], where, in particular, necessary and sufficient conditions have been established deciding when such a module will be a free R-module.