Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T17:18:46.147Z Has data issue: false hasContentIssue false

Reconstructing curves from sets of quantized observations

Published online by Cambridge University Press:  26 February 2010

A. G. Amercrombie
Affiliation:
Department of Pure Mathematics, University of Liverpool, P. O. Box 147, Liverpool L69 3BX.
Get access

Extract

For arbitrary f: RR and ϒ ⊂ Z × R we define the set of quantized observations of f relative to ϒ as follows: for each integer n and each yR we write

(the supremum of an empty set is taken to be −∞ ) and we put

Thus for example and , where [x] (without subscript) denotes as usual the integer part of x.

Type
Research Article
Copyright
Copyright © University College London 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Bruijn, N. G. de. Updown generation of Beatty sequences. Proc. Kon. Ned. Akad. Wet., A, 92 (1989), 385407.Google Scholar
2.Corput, J. G. van der. Über Gitterpunkte in der Ebene. Math. Ann., 81 (1920), 120.CrossRefGoogle Scholar
3.Graham, S. W. and Kolesnik, G.. Van der Corpufs method for exponential sums. LMS Lecture Notes, 115 (Cambridge University Press, 1987).Google Scholar
4.Loo-Keng, Hua. Introduction to Number Theory (Springer-Verlag, 1982).CrossRefGoogle Scholar
5.Jarnik, V., Über die Gitterpunkte auf konvexen Kurven. Math. Zeit., 24 (1925), 500518.CrossRefGoogle Scholar
6.Kendall, D. G.. On the number of lattice points inside a random oval. Quart. J. Math. (Oxford series), 19 (1948), 126.CrossRefGoogle Scholar
7.Rooij, A. C. M. van and Schikhof, W. H.. A second course on real functions (Cambridge University Press, 1982).CrossRefGoogle Scholar
8.Vershik, A. M.. The limit shape theorem for convex lattice polygons and related topics. Fund. Anal. Appl. To appear.Google Scholar