Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T17:34:32.378Z Has data issue: false hasContentIssue false

The real cubic case of Mahler's conjecture

Published online by Cambridge University Press:  26 February 2010

B. Volkmann
Affiliation:
Institute of Mathematics, University of Mainz, Germany
Get access

Extract

For any (real or complex) transcendental number ξ and any integer n > 0 let ϑn(ξ) be the least upper bound of the set of all positive numbers σ for which there exist infinitely many polynomials p1(x), p2(x), … of degree n, with integer coefficients, satisfying

where ‖pi‖ denotes the “height” of pi(x), i.e. the maximum modulus of the coefficients. Plainly ϑn(ξ) serves as a measure of how well (or how badly) the number zero can be approximated by values of nth degree integral polynomials at the point ξ. It can be shown by means of the “Schubfachprinzip” that, at worst,

if the transcendental number ξ is real, and

if it is complex, i.e.ϑn(ξ) is never smaller than these bounds. Furthermore, a conjecture of K. Mahler may be interpreted as stating that for almost all real and for almost all complex numbers the equations (2) and (3), respectively, are actually true; in other words, almost all transcendental numbers have the worst possible approximation property for any degree n.

Type
Research Article
Copyright
Copyright © University College London 1961

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Davenport, H., “A note on binary cubic forms”, Mathematika, 8 (1961), 5862.Google Scholar
2.Kasch, F., “Über eine metrische Eigenschaft dor S-Zahlen”, Math. Zeit., 70 (1958), 263270.CrossRefGoogle Scholar
3.Kasch, F., “Ein metrischer Beitrag über Mahlersche S-Zahlen. II”, Journ. reine angew. Math., 203 (1960), 157159.Google Scholar
4.Kasch, F., and Volkmann, B., “Zur Mahlerschen Vermutung über S-Zahlen”, Math. Ann. 136 (1958), 442453.Google Scholar
5.Kubilyus, J. F., “On the application of Vinogradov's method to the solution of a problem in motric number theory”, Dolk. Akad. Nauk USSR, N.S., 67 (1949), 783786 (in Russian).Google Scholar
6.Schneider, Th., Einführung in die transzendenten Zahlen (Springer, Berlin-Göttingen-Heidelberg, 1957).CrossRefGoogle Scholar
7.Volkmann, B., “Zum kubischen Fall der Mahlerschen Vermutung”, Math. Ann., 139 (1959), 8790.CrossRefGoogle Scholar
8.Volkmann, B., “Ein metrischer Beitrag über Mahlersche S-Zahlen. I”. Journ. reine angew. Math., 203 (1960), 154156.Google Scholar
9.Volkmann, B., “Zur Mahlerschen Vermutung im Komplexen”, Math. Ann., 140 (1960), 351359.CrossRefGoogle Scholar