Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-16T17:13:12.570Z Has data issue: false hasContentIssue false

Pure Gauss sums over finite fields

Published online by Cambridge University Press:  26 February 2010

Ronald J. Evans
Affiliation:
Department of Mathematics, University of California, San Diego, La Jolla, California 92093, U.S.A.
Get access

Abstract

New classes of pairs e, p are presented for which the Gauss sums corresponding to characters of order e over finite fields of characteristic p are pure, i.e., have a real power. Certain pure Gauss sums are explicitly evaluated.

Type
Research Article
Copyright
Copyright © University College London 1981

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baumert, L. D., Mills, W. H. and Ward, R. L.. “Uniform cyclotomy”, J. Number Theory (to appear).Google Scholar
2.Berndt, B. C. and Evans, R. J.. “Sums of Gauss, Jacobi, and Jacobsthal”, J. Number Theory, 11 (1979), 349398.CrossRefGoogle Scholar
3.Evans, R. J.. “Generalizations of a theorem of Chowla on Gaussian sums”, Houston J. Math., 3 (1977), 343349.Google Scholar
4.Giudici, R. E., Muskat, J. B. and Robinson, S. F.. “On the evaluation of Brewer's character sums”, Trans. Amer. Math. Soc, 171 (1972), 317347.Google Scholar
5.Ireland, K. and Rosen, M. I.. Elements of number theory (Bogden & Quigley, Tarrytown-on-Hudson, 1972).Google Scholar
6.Kubert, D. S. and Lang, S.. “Independence of modular units on Tate curves”, Math. Annalen, 240 (1979), 191201.CrossRefGoogle Scholar
7.Stickelberger, L.. “Über eine Verallgemeinerung der Kreistheilung”, Math. Annalen, 37 (1890), 321367.CrossRefGoogle Scholar