Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-23T19:01:07.506Z Has data issue: false hasContentIssue false

Power mean values of the Riemann zeta-function

Published online by Cambridge University Press:  26 February 2010

J.-M. Deshouillers
Affiliation:
Laboratoire associé au C.N.R.S.no. 226, Université de Bordeaux I, U.E.R. de Mathématiques et d'Informatique, 351, Cours de la Libération, 33405 Talence, Cedex, France.
H. Iwaniec
Affiliation:
Mathematics Institute, Polish Academy of Sciences, ul. Śniadeckich 8, 00-950 Warszawa, Poland.
Get access

Extract

The classical mean value theorem for Dirichlet's polynomials states that

see H. L. Montgomery [7]. This formula is very useful in the theory of the Riemann zeta-function ζ(s). From the approximate functional equation

where | χ(½ + it)| = 1, u, v ≥ 1, 2πuv = t (see E. C. Titchmarsh [8]) it follows that χ(½ + it) can be well approximated by Dirichlet's polynomials of length N< t½.

Type
Research Article
Copyright
Copyright © University College London 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Deshouillers, J.-M. and Iwaniec, H.. Kloosterman sums and Fourier coefficients of cusp forms. Inv. Math., 70 (1982), 219288.CrossRefGoogle Scholar
2.Heath-Brown, D. R.. The fourth power moment of the Riemann zeta-function. Proc. London Math. Soc, (3), 38 (1979), 385422.CrossRefGoogle Scholar
3.Heath-Brown, D. R.The twelfth power moment of the Riemann zeta-function. Quart. J. Math. Oxford, (2), 29 (1978), 443462.CrossRefGoogle Scholar
4.Iwaniec, H.On mean values for Dirichlet's polynomials and the Riemann zeta-function. J. London Math. Soc, (2), 22 (1980), 3945.CrossRefGoogle Scholar
5.Iwaniec, H.. Fourier coefficients of cusp forms and the Riemann zeta-function. Séminaire de Théorie des Nombres, Bordeaux 79/80, exposé no. 18, 36 pp.Google Scholar
6.Kuznietsov, N. V.Petersson hypothesis for parabolic forms of weight zero and Linnik hypothesis. Sums of Kloosterman sums. Math. Sbornik, 111 (153), No. 3 (1980), 334383. Also Math. USSR, Sb., 39 (1981), 299-342.Google Scholar
7.Montgomery, H. L.Topics in Multiplicative Number Theory, Lect. Notes in Math. 227 (Springer, Heidelberg, 1971)CrossRefGoogle Scholar
8.Titchmarsh, E. C.. The Theory of the Riemann Zeta-function (Clarendon Press, Oxford, 1951).Google Scholar