Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-23T05:03:45.175Z Has data issue: false hasContentIssue false

PERMUTATION CLASSES OF EVERY GROWTH RATE ABOVE 2.48188

Published online by Cambridge University Press:  10 December 2009

Vincent Vatter*
Affiliation:
Department of Mathematics, Dartmouth College, Hanover, NH 03755, U.S.A. (email: [email protected])
Get access

Abstract

We prove that there are permutation classes (hereditary properties of permutations) of every growth rate (Stanley–Wilf limit) at least λ≈2.48187, the unique real root of x5−2x4−2x2−2x−1, thereby establishing a conjecture of Albert and Linton.

Type
Research Article
Copyright
Copyright © University College London 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Albert, M. H., On the length of the longest subsequence avoiding an arbitrary pattern in a random permutation. Random Structures Algorithms 31(2) (2007), 227238.CrossRefGoogle Scholar
[2]Albert, M. H. and Atkinson, M. D., Simple permutations and pattern restricted permutations. Discrete Math. 300(1–3) (2005), 115.CrossRefGoogle Scholar
[3]Albert, M. H. and Linton, S., Growing at a perfect speed. Combin. Probab. Comput. 18 (2009), 301308.CrossRefGoogle Scholar
[4]Arratia, R., On the Stanley–Wilf conjecture for the number of permutations avoiding a given pattern. Electron. J. Combin. 6 (1999), 4, Note, N1.CrossRefGoogle Scholar
[5]Balogh, J., Bollobás, B. and Morris, R., Hereditary properties of ordered graphs. In Topics in Discrete Mathematics (Algorithms and Combinatorics 26) (eds M. Klazar, J. Kratochvíl, M. Loebl, J. Matoušek, R. Thomas and P. Valtr), Springer (Berlin, 2006), 179213.CrossRefGoogle Scholar
[6]Bollobás, B., Hereditary and monotone properties of combinatorial structures. In Surveys in Combinatorics 2007 (London Mathematical Society Lecture Note Series 346) (eds A. Hilton and J. Talbot), Cambridge University Press (Cambridge, 2007), 139.Google Scholar
[7]Flajolet, P. and Sedgewick, R., Analytic Combinatorics, Cambridge University Press (Cambridge, 2009).CrossRefGoogle Scholar
[8]Kaiser, T. and Klazar, M., On growth rates of closed permutation classes. Electron. J. Combin. 9(2) (2003), 20, Research paper 10.CrossRefGoogle Scholar
[9]Klazar, M., Overview of some general results in combinatorial enumeration. In Permutation Patterns, St Andrews 2007 (London Mathematical Society Lecture Note Series) (eds. S. Linton, N. Ruškuc and V. Vatter), Cambridge University Press (Cambridge), (to appear).Google Scholar
[10]Marcus, A. and Tardos, G., Excluded permutation matrices and the Stanley–Wilf conjecture. J. Combin. Theory Ser. A 107(1) (2004), 153160.CrossRefGoogle Scholar
[11]Vatter, V., Small permutation classes. arXiv:0712.4006v2 [math.CO].Google Scholar