No CrossRef data available.
Published online by Cambridge University Press: 26 February 2010
The Picard group P(ZG) of the integral group ring ZG is defined as the class group of two-sided invertible ZG-ideals of QG modulo those principal ideals generated by an invertible central element. The basic properties of Picard groups have been established by A. Fröhlich, I. Reiner and S. Ullom [1], [2], [3]. In this note we settle an outstanding question by exhibiting a class of finite p-groups G whose Picard groups contain nontrivial elements which are represented by principal ideals; these elements remain nontrivial in P(ZpG) also. We obtain these ideals from outer automorphisms of the groups.