Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T22:15:02.765Z Has data issue: false hasContentIssue false

On Vinogradov's mean value theorem

Published online by Cambridge University Press:  26 February 2010

Trevor D. Wooley
Affiliation:
Department of Mathematics, University of MichiganAnn Arbor, MI 48109-1003U.S.A..
Get access

Extract

The object of this paper is to obtain improvements in Vinogradov's mean value theorem widely applicable in additive number theory. Let Js,k(P) denote the number of solutions of the simultaneous diophantine equations

with 1 ≥ xi, yiP for 1 ≥ is. In the mid-thirties Vinogradov developed a new method (now known as Vinogradov's mean value theorem) which enabled him to obtain fairly strong bounds for Js,k(P). On writing

in which e(α) denotes e2πiα, we observe that

where Tk denotes the k-dimensional unit cube, and α = (α1,…,αk).

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Baker, R. C.. Diophantine Inequalities. L.M.S. Monographs, New Series (Oxford, 1986).Google Scholar
2.Hardy, G. H. and Littlewood, J. E.. Some problems of “Partitio Numerorum”: IV. Math. Zeit., 12 (1922), 161188.CrossRefGoogle Scholar
3.Heath-Brown, D. R.. Weyl's inequality, Hua's inequality, and Waring's problem. J. hand. Math. Soc (2), 38 (1988), 216230.Google Scholar
4.Hua, L.-K.. On Waring's problem. Quart. J. Math. Oxford, 9 (1938), 199202.CrossRefGoogle Scholar
5.Hua, L.-K.. An improvement of Vinogradov's mean value theorem and several applications. Quart. J. Math. Oxford, 20 (1949), 4861.CrossRefGoogle Scholar
6.Hua, L.-K.. Additive Theory of Prime Numbers (Providence, 1965).Google Scholar
7.Karatsuba, A. A.. The mean value of the modulus of a trigonometric sum. Izv. Akad. Nauk SSSR, 37 (1973), 12031227.Google Scholar
8.Linnik, Yu. V.. On Weyl's sums. Mat. Sbornik (Rec. Math.), 12 (1943), 2339.Google Scholar
9.Stechkin, S. B.. On mean values of the modulus of a trigonometric sum. Trudy Mat. Inst. Steklov., 134 (1975), 283309.Google Scholar
10.Turina, O. V.. A new estimate for a trigonometric integral of I. M. Vinogradov. Izv. Akad. Nauk SSSR, Ser. Mat., 51 (1987), No. 2. Translated in Math. USSR Izvestiya, 30 (1988), 2, 337351.Google Scholar
11.Vaughan, R. C.. The Hardy-Littlewood Method (Cambridge University Press, 1981).Google Scholar
12.Vaughan, R. C.. On Waring's problem for cubes. J. Reine Angew. Math., 365 (1986), 122170.Google Scholar
13.Vaughan, R. C.. On Waring's problem for smaller exponents, II. Mathematika, 33 (1986), 622.CrossRefGoogle Scholar
14.Vinogradov, I. M.. New estimates for Weyl sums. Dokl. Akad. Nauk SSSR, 8 (1935), 195198.Google Scholar
15.Vinogradov, I. M.. The method of trigonometrical sums in the theory of numbers. Trav. Inst. Steklov, 23 (1947).Google Scholar
16.Walfisz, A. Z.. Weylsche Exponentialsummen in der neueren Zahlentheorie. Math. Forsch., XV (Berlin, 1963).Google Scholar
17.Wooley, T. D.. Large improvements in Waring's problem. Annals of Math., 135 (1992), 131164.CrossRefGoogle Scholar
18.Wooley, T. D.. On Vinogradov's mean value theorem, II. Mich. Math. J. to appear.Google Scholar