No CrossRef data available.
Article contents
On the structure of a quotient field modulo its domain
Published online by Cambridge University Press: 26 February 2010
Abstract
The structures of the module Q/R over certain domains R are investigated, where Q denotes the field of quotients of R.
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 2003
References
1.Bazzoni, S.. Class semigroups of Prüfer domains. J. Algebra, 184 (1996), 613–631.CrossRefGoogle Scholar
2.Birkenmeier, G. F., Calugareanu, G., Fuchs, L. and Goelers, H. P.. The fully invariant extending property for abelian groups. Comm. Alg., 29 (2001), 673–685.CrossRefGoogle Scholar
3.Brandal, W.. On h–local integral domains. Trans. Amer. Math. Soc, 206 (1975), 201–212.Google Scholar
4.Fuchs, L. and Salce, L.. Modules over Non–Noetherian Domains. Math. Surveys and Monographs, vol. 84 (Amer. Math. Society. Providence, 2001).Google Scholar
6.Hamsher, R.. On the structure of a one dimensional quotient field. J. Algebra, 19 (1971), 416–425.Google Scholar
8.Matlis, E.. Some properties of Noetherian domains of dimension 1. Canad. J. Math., 13 (1961), 569586.Google Scholar
10.Matlis, E.. Some properties of commutative ring extensions. Illinois J. Math., 31 (1987), 374418.CrossRefGoogle Scholar
11.Warfield, R. B.. Decompositions of injective modules. Pacific J. Math., 31 (1969). 263–276.CrossRefGoogle Scholar