Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T04:19:02.484Z Has data issue: false hasContentIssue false

ON THE LEAST SQUAREFREE NUMBER IN AN ARITHMETIC PROGRESSION

Published online by Cambridge University Press:  23 March 2017

R. M. Nunes*
Affiliation:
EPFL SB MATHGEOM TAN, Station 8, CH-1015 Lausanne, Switzerland email [email protected]
Get access

Abstract

We prove an asymptotic formula for squarefree numbers in arithmetic progressions, improving previous results by Prachar and Hooley. As a consequence we improve a lower bound of Heath-Brown for the least squarefree number in an arithmetic progression.

Type
Research Article
Copyright
Copyright © University College London 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Erdős, P., Über die kleinste quadratfreie Zahl einer arithmetischen Reihe. Monatsh. Math. 64 1960, 314316 (in German).CrossRefGoogle Scholar
Heath-Brown, D. R., The least square-free number in an arithmetic progression. J. Reine Angew. Math. 332 1982, 204220.Google Scholar
Hooley, C., A note on square-free numbers in arithmetic progressions. Bull. Lond. Math. Soc. 7 1975, 133138.CrossRefGoogle Scholar
Nunes, R. M., Squarefree numbers in large arithmetic progressions. Preprint, 2016,arXiv:1602.00311.CrossRefGoogle Scholar
Pierce, L. B., The 3-part of class numbers of quadratic fields. J. Lond. Math. Soc. (2) 71(3) 2005, 579598.CrossRefGoogle Scholar
Prachar, K., Über die kleinste quadratfreie Zahl einer arithmetischen Reihe. Monatsh. Math. 62 1958, 173176 (in German).CrossRefGoogle Scholar