Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-26T22:30:08.108Z Has data issue: false hasContentIssue false

On the Koszul homology modules for the powers of a multiplicity system

Published online by Cambridge University Press:  26 February 2010

J-L. García Roig
Affiliation:
Cruz Roja 26, 3°4a, Hospitalet, Barcelona, Spain.
D. Kirby
Affiliation:
Faculty of Mathematical Studies, The University, Southampton.
Get access

Extract

It is well-known that if R is a commutative ring with identity, M is a Noetherian R-module and I is an ideal of R such that M/IM has finite length, then the function nlR (M /InM) is a polynomial function for n large (cf. [3], p. II-25), where lR denotes length as an R-module. In this note we are concerned with the function

where a1, … , ar is a multiplicity system for has finite length.

Type
Research Article
Copyright
Copyright © University College London 1986

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Northcott, D. G.. Lessons on Rings, Moduiles and Multiplicities (Cambridge, 1968).CrossRefGoogle Scholar
2.Schenzel, P., Ngo Viet Trung and Nguyen Tu Cuong. Verallgemeinerte Cohen-Macaulay Moduln. Math. Nachr., 85 (1978), 5773.CrossRefGoogle Scholar
1.Serre, J-P.. Algèbre locale: Multiplicités, Lecture Notes in Math. No. 11 (Springer, Berlin, 1975).Google Scholar
4.Stuckrad, J. and Vogel, W.. Eine Verallgemeinergung der Cohen-Macaulay Ringe und Anwendungen auf ein Problem der Multiplizitätstheorie. J. Math. Kyoto Univ., 13 (1973), 513528.Google Scholar