Article contents
On the Hasse principle for cubic surfaces
Published online by Cambridge University Press: 26 February 2010
Extract
It was conjectured by Mordell [6] that the Hasse principle holds for cubic surfaces in 3-dimensional projective space other than cones†: i.e., that such a surface defined over the rational field 0 has a rational point whenever it has points defined over every p-adic field Qp. This conjecture was verified for singular cubic surfaces by Skolem [11” and for surfaces
with
by Selmer [9]: but it was disproved for cubic surfaces in general by Swinnerton-Dyer [12] (see also Mordell [7]). It therefore becomes of interest to specify fairly wide classes of cubic surfaces for which the Hasse principle does hold. It was shown independently by F. Châtєlet and by Swinnerton-Dyer (both, apparently, unpublished) that this is the case when it contains a set of either 3 or 6 mutually skew lines which are rational as a whole (and trivially true when there is a rational pair of lines, since then there are always rational points). Selmer [9] conjectures on the basis of numerical evidence that the Hasse principle is also true for all surfaces of the type (1). It is the object of this note to disprove this by showing that the Hasse principle fails for
- Type
- Research Article
- Information
- Copyright
- Copyright © University College London 1966
References
- 32
- Cited by