Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-11T00:02:00.874Z Has data issue: false hasContentIssue false

On the Hankel determinants of univalent functions

Published online by Cambridge University Press:  26 February 2010

C. Pommerenke
Affiliation:
Imperial College, London, S.W.7.
Get access

Extract

Introduction and result. Let

be analytic in |z| < 1. The Hankel determinants are defined by

Type
Research Article
Copyright
Copyright © University College London 1967

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Cantor, D. G., “Power series with integral coefficients”, Bull. Amer. Math. Soc., 69 (1963), 362366.CrossRefGoogle Scholar
2.Dienes, P., The Taylor series (New York, 1957).Google Scholar
3.Golusin, G. M., Geometrische Funktionentheorie (Berlin, 1957).Google Scholar
4.Hayman, W. K., “On the second Hankel determinant of mean univalent functions”, Proc. London Math. Soc, to appear.Google Scholar
5.Lucas, K. W., “A two-point modulus bound for areally mean p–valent functions”, J. London Math. Soc., to appear.Google Scholar
6.Pommerenke, Ch., “Über die Faberschen Polynome schlichter Funktionen”, Math. Zeit., 85 (1964), 197208.CrossRefGoogle Scholar
7.Pommerenke, Ch., “On the coefficients and Hankel determinants of univalent functions”, J. London Math. Soc., 41 (1966), 111122.CrossRefGoogle Scholar
8.Pommerenke, Ch., “Relations between the coefficients of a univalent function”, Inventiones math., 3 (1967), 115.CrossRefGoogle Scholar