Published online by Cambridge University Press: 26 February 2010
Recent advances in the theory of exponential sums (see, for example, [6], [7], [8], [12]) have contributed to corresponding progress in our understanding of the solubility of systems of simultaneous additive equations (see, in particular, [1], [2], [3], [4]). In a previous memoir [11] we developed a version of Vaughan's iterative method (see Vaughan [8]) suitable for the analysis of simultaneous additive equations of differing degrees, discussing in detail the solubility of simultaneous cubic and quadratic equations. The mean value estimates derived in [11] are, unfortunately, weaker than might be hoped, owing to the presence of undesirable singular solutions in certain auxiliary systems of congruences. The methods of [12] provide a flexible alternative to Vaughan's iterative method, and, as was apparent even at the time of their initial development at the opening of the present decade, such ideas provide a means of avoiding altogether the aforementioned problematic singular solutions. The systematic development of such an approach having been described recently in [15], in this paper we apply such methods to investigate the solubility of pairs of additive equations, one cubic and one quadratic, thereby improving the main conclusion of [11].