Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-26T21:55:03.631Z Has data issue: false hasContentIssue false

On Minkowski reduction of positive quaternary quadratic forms

Published online by Cambridge University Press:  26 February 2010

E. S. Barnes
Affiliation:
University of Adelaide, Adelaide, South Australia 5001
M. J. Cohn
Affiliation:
University of Adelaide, Adelaide, South Australia 5001
Get access

Extract

§1. Let f(x) = xAx be a positive definite or semi–definite n-ary quadratic form with real symmetric matrix A. Then, f is Minkowski-reduced, if for all sets of integers m1, …, mn with gcd (mi, …, mn) = 1,

Type
Research Article
Copyright
Copyright © University College London 1976

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Delone, B. N. and Ryškov, S. S.. “Extremal problems in the theory of positive quadratic forms”, Trudy Mat. Inst. Steklov, 112 (1971), 203223 = Proc. Steklov Math. Inst, 112 (1971), 211-231.Google Scholar
2.Minkowski, H..“Über positive quadratische Formen”, J. reine angew. Math., 99 (1886), 19; Ges. Abh. I, 149-156.CrossRefGoogle Scholar
3.Minkowski, H.. “Zur Theorie der positiven quadratischen Formen”, J. reine angew. Math., 101 (1887), 196202; Ges. Abh. 1,212-218CrossRefGoogle Scholar
4.Minkowski, H.. “Diskontinuitatsbereich fur arithmetische Aquivalenz”, J. reine angew. Math., 129 (1905), 220274;-Ges. Abh. II, 53-10CrossRefGoogle Scholar
5.Motzkin, T. S., Raiffa, H., Thompson, G. L. and Thrall, R. M.. “The double description method”, Annals of Math. Studies, 28 (1953), 5173.Google Scholar
6.Ryskov, S. S.. “The polyhedron n(m) and some extremal problems in the geometry of numbers”, Dokl. Akad. Nauk SSSR, 194 (1970), 514517 = Soviet Math. Doklady, 11 (1970), 1240- 1244.Google Scholar