Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T04:46:46.894Z Has data issue: false hasContentIssue false

On Baire-1/4 functions and spreading models

Published online by Cambridge University Press:  26 February 2010

Vassiliki Farmaki
Affiliation:
Department of Mathematics, University of Athens, Panepistemiopolis, llissia, Greece.
Get access

Abstract

We prove a characterization of functions in B1/4(K)\C(K), where K is a compact metric space in terms of c0-spreading models, answering a Problem of R. Haydon, E. Odell and H. Rosenthal. Beginning with B1/4(K) we define a decreasing family (Vξ(K),║ · ║ξ)1≤ξ<ω1 of Banach spaces whose intersection is DBSC(K) and we prove an analogous stronger property for the functions in Vξ(K)\C(K). Defining the s-spreading model-index, we classify B1/4;(K) and we prove that s-SM[F]>ξ for every FVξ(K). Also we classify the separable Banach spaces by defining the c0-SM-index which measures the degree to which they have sequences with extending spreading models equivalent to the usual basis of c0. We give examples of Baire-1 functions and reflexive spaces with arbitrary large indices.

Type
Research Article
Copyright
Copyright © University College London 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Alspach, D. and Argyros, S.. Complexity of weakly null sequences. Dissertationes Math., 321 (1992).Google Scholar
2.Argyros, S.. Banach spaces of the type of Tsirelson. To appear.Google Scholar
3.Beauzamy, B. and Lapreste, J. T.. Modèlesétalés des espaces de Banach, Travaux en Cours (Hermann, Paris, 1984).Google Scholar
4.Bellenot, S., Haydon, R. and Odell, E.. Quasi-reflexive and tree spaces constructed in the spirit of R. C. James. Contemporary Math., 85 (1989), 1943.CrossRefGoogle Scholar
5.Bessaga, C. and Pelczynski, A.. On bases and unconditional convergence of series in Banach spaces. Studia Math., 17 (1958), 151164.CrossRefGoogle Scholar
6.Bourgain, J.. On convergent sequences of continuous functions. Bull. Soc. Math. Bel., 32 (1980), 235249.Google Scholar
7.Giesy, D. P. and James, R. C.. Uniformly non-11 and B-convex Banach spaces. Studia Math., 48 (1973), 6169.CrossRefGoogle Scholar
8.Haydon, R., Odell, E. and Rosenthal, H.. On certain classes of Baire-1 functions with applications to Banach space theory. In Functional Analysis, Editors Odell, E. and Rosenthal, H., Lectures Notes, 1470 (Springer, 1991), 135.Google Scholar
9.James, R. C.. Uniformly non-square Banach spaces. Ann. of Math., 80 (1964), 542550.CrossRefGoogle Scholar
10.Kechris, A. and Louveau, A.. A classification of Baire class 1 functions. Trans. Amer. Math. Soc., 318 (1990), 209236.CrossRefGoogle Scholar
11.Lindenstrauss, J. and Tzafriri, L.. Classical Banach spaces, I (Springer, Berlin, 1977).CrossRefGoogle Scholar
12.Schreier, J.. Ein Gegenbeispiel zur Theorie der schwachen Konvergenz. Studia Math., 2 (1930), 5862.CrossRefGoogle Scholar