Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T16:50:16.475Z Has data issue: false hasContentIssue false

A NOTE ON FOURIER COEFFICIENTS OF POINCARÉ SERIES

Published online by Cambridge University Press:  21 December 2010

Emmanuel Kowalski
Affiliation:
ETH Zürich – D-MATH, Rämistrasse 101, 8092 Zürich, Switzerland (email: [email protected])
Abhishek Saha
Affiliation:
ETH Zürich – D-MATH, Rämistrasse 101, 8092 Zürich, Switzerland (email: [email protected])
Jacob Tsimerman
Affiliation:
Princeton University, Fine Hall, Princeton NJ 08540, U.S.A. (email: [email protected])
Get access

Abstract

We give a short and “soft” proof of the asymptotic orthogonality of Fourier coefficients of Poincaré series for classical modular forms as well as for Siegel cusp forms, in a qualitative form.

Type
Research Article
Copyright
Copyright © University College London 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Gottschling, E., Explizite Bestimmung der Randflächen des Fundamentalbereiches der Modulgruppe zweiten Grades. Math. Ann. 138 (1959), 103124.Google Scholar
[2]Iwaniec, H. and Kowalski, E., Analytic Number Theory (American Mathematical Society Colloquium Publications 53), American Mathematical Society (Providence, RI, 2004).Google Scholar
[3]Klingen, H., Introductory Lectures on Siegel Modular Forms (Cambridge Studies in Advanced Mathematics 20), Cambridge University Press (Cambridge, 1990).Google Scholar
[4]Kowalski, E., Saha, A. and Tsimerman, J., Local spectral equidistribution for Siegel modular forms and applications. Preprint, 2010, arXiv:1010.3648.Google Scholar
[5]Maass, H., Über die Darstellung der Modulformen n-ten Grades durch Poincarésche Reihen. Math. Ann. 123 (1951), 125151.Google Scholar
[6]Sarnak, P., Statistical properties of eigenvalues of the Hecke operator. In Analytic Number Theory and Diophantine Problems (Progess in Mathematics 60), Birkhäuser (Boston, MA, 1987), 75102.Google Scholar
[7]Serre, J.-P., Répartition asymptotique des valeurs propres de l’opérateur de Hecke T p. J. Amer. Math. Soc. 10 (1997), 75102.Google Scholar
[8]Siegel, C. L., Symplectic geometry. Amer. J. Math. 65 (1943), 186; www.jstor.org/stable/2371774.Google Scholar