Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-23T03:24:14.802Z Has data issue: false hasContentIssue false

NEW REPRESENTATIONS FOR APÉRY-LIKE SEQUENCES

Published online by Cambridge University Press:  10 December 2009

Heng Huat Chan
Affiliation:
Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543 Max-Planck-Institut für Mathematik, Vivatsgasse 7, D-53111, Bonn, Germany (email: [email protected])
Wadim Zudilin
Affiliation:
School of Mathematical and Physical Sciences, University of Newcastle, Callaghan NSW 2308, Australia (email: [email protected])
Get access

Abstract

We prove algebraic transformations for the generating series of three Apéry-like sequences. As application, we provide new binomial representations for the sequences. We also illustrate a method that derives three new series for 1/π from a classical Ramanujan’s series.

Type
Research Article
Copyright
Copyright © University College London 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1]Almkvist, G. and Zudilin, W., Differential equations, mirror maps and zeta values. In Mirror Symmetry V (AMS/IP Studies in Advanced Mathemtics 38) (eds N. Yui, S.-T. Yau and J. D. Lewis), International Press & American Mathematical Society (Providence, RI, 2007), 481515.Google Scholar
[2]Apéry, R., Irrationalité de ζ(2) et ζ(3). Astérisque 61 (1979), 1113.Google Scholar
[3]Bauer, G., Von den Coefficienten der Reihen von Kugelfunctionen einen Variablen. J. für Math. (Crelles J.) 56 (1859), 101121.Google Scholar
[4]Berndt, B. C., Chan, H. H. and Huang, S.-S., Incomplete elliptic integrals in Ramanujan’s lost notebook. Contemp. Math. 254 (2000), 79126.CrossRefGoogle Scholar
[5]Berndt, B. C., Chan, H. H. and Liaw, W.-L., On Ramanujan’s quartic theory of elliptic functions. J. Number Theory 88 (2001), 129156.CrossRefGoogle Scholar
[6]Beukers, F., Irrationality proofs using modular forms, Journées arithmétiques (Besançon, 1985). Astérisque 147148 (1987), 271–283.Google Scholar
[7]Chan, H. H., Chan, S. H. and Liu, Z., Domb’s numbers and Ramanujan–Sato type series for 1/π. Adv. Math. 186(2) (2004), 396410.CrossRefGoogle Scholar
[8]Chan, H. H. and Verrill, H., The Apéry numbers, the Almkvist–Zudilin numbers and new series for 1/π. Math. Res. Lett. 16(3) (2009), 405420.CrossRefGoogle Scholar
[9]Ramanujan, S., Modular equations and approximations to π. Q. J. Math. Oxford Ser. (2) 45 (1914), 350372; Reprinted in Collected Papers of Srinivasa Ramanujan (eds G. H. Hardy, P. V. Sechu Aiyar and B. M. Wilson), Cambridge University Press (Cambridge, 1927; Chelsea Publ., New York, 1962), 23–39.Google Scholar
[10]Rogers, M. D., New 5F 4 hypergeometric transformations, three-variable Mahler measures, and formulas for 1/π. Ramanujan J. 18(3) (2009), 327340.CrossRefGoogle Scholar
[11]Slater, L. J., Generalized Hypergeometric Functions, Cambridge University Press (Cambridge, 1966).Google Scholar
[12]Zudilin, W., Quadratic transformations and Guillera’s formulas for 1/π 2. Math. Notes 81(3) (2007), 297301.CrossRefGoogle Scholar
[13]Zudilin, W., Ramanujan-type formulae for 1/π: a second wind? In Modular Forms and String Duality (Banff, June 2006) (Fields Inst. Commun. 54) (ed. N. Yui), American Mathematical Society (Providence, RI, 2008), 179188.Google Scholar