Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T19:12:20.219Z Has data issue: false hasContentIssue false

Multiple Franel integrals

Published online by Cambridge University Press:  26 February 2010

G. R. H. Greaves
Affiliation:
School of Mathematics, University of Wales, Senghennydd Road, Cardiff CF2 4AG, Wales.
R. R. Hall
Affiliation:
Department of Mathematics, University of York, York. Y01 5DD.
M. N. Huxley
Affiliation:
School of Mathematics, University of Wales, Senghennydd Road, Cardiff CF2 4AG, Wales.
J. C. Wilson
Affiliation:
Department of Mathematics, University of York, York. Y01 5DD.
Get access

Extract

Let

and A1, A2, …, An, a1, a2, …, an be positive integers. We consider the related integrals

and

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Apostol, T. M.. Generalized Dedekind sums and the transformation formulae of certain Lambert series. Duke Math. J., 17 (1950), 147157.CrossRefGoogle Scholar
2.Apostol, T. M.. Theorems on generalized Dedekind sums. Pacific J. Math., 2 (1952), 19.Google Scholar
3.Franel, J.. Les suites de Farey et le probleme des nombres premiers. Gottinger Nachrichten, (1924), 198201.Google Scholar
4.Hall, R. R.. The distribution of squarefree numbers. J. reine angew Math., 394 (1989), 107117.Google Scholar
5.Hall, R. R.. Large irregularities in sets of multiples and sieves. Mathematika, 37 (1990), 119135.Google Scholar
6.Rademacher, H.. Generalization of the reciprocity formula for Dedekind sums. Duke Math. J., 21 (1954), 391397.CrossRefGoogle Scholar
7.Rademacher, H. and Grosswald, E.. Dedekind Sums (Carus Math. Monographs) 16.Google Scholar
8.Whittaker, E. T. and Watson, G. N.. Modem Analysis (University Press, Cambridge, 1945).Google Scholar