Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-27T03:30:52.871Z Has data issue: false hasContentIssue false

Minkowski surface area under affine transformations

Published online by Cambridge University Press:  26 February 2010

Rolf Clack
Affiliation:
Mathematisches Institut der Albert-Ludwigs-Universität, Hebelstrasse 29, 7800 Freiburg im Br., Germany.
Get access

Extract

A convex compact subset of ℝd is called a convex body. The (Euclidean) surface area and volume of a convex body K are denoted s(K) and v(K) respectively. The support function of a convex body K is denned by h(K, x) = maxy∈K xty and the polar dual of K is given by K0 = {x: |xty|1, y∈K}. Double vertical bars shall denote the Euclidean length of a vector , and S shall denote the unit sphere (the Euclidean unit ball): S = {x: ║x║≤1}. We use for the mixed volume

MSC classification

Type
Research Article
Copyright
Copyright © University College London 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Benson, R. V.. Euclidean Geometry and Convexity (McGraw-Hill, 1966).Google Scholar
2. Bonnesen, T. and Fenchel, W.. Theory of Convex Bodies. Translated by Boron, , Christenson, and Smith, (BCS Associates, Idaho, USA, 1987). Original German edition copyright 1934 by Springer, Berlin.Google Scholar
3. Busemann, H.. The isoperimetric problem for Minkowski area. Amer. J. Math., 71 (1949), 743762.CrossRefGoogle Scholar
4. Busemann, H.. The foundations of Minkowski geometry. Comm. Math. Helvetici, 24 (1950), 156187.CrossRefGoogle Scholar
5. Busemann, H.. A theorem on convex bodies of the Brünn-Minkowski type. Proc. Nat. Acad. Sci. U.S.A., 35 (1949), 2731.CrossRefGoogle ScholarPubMed
6. Holmes, R. D. and Thompson, A. C.. N-dimensional area and content in Minkowski spaces. Pac. J. Math., 85 (1979), 77110.CrossRefGoogle Scholar
7. Johnson, K. and Thompson, A. C.. On the isoperimetric mapping in Minkowski spaces. Colloquia Math. Soc. Jànos Bolyai, 48. Intuitive Geometry (Siófok, 1985), 273287.Google Scholar
8. Lutwak, E.. Intersection bodies and dual mixed volumes. Adv. in Math., 71 (1988), 232261.CrossRefGoogle Scholar
9. Petty, C. M.. Surface area of a convex body under affine transformations. Proc. Amer. Math. Soc., 12 (1961), 824828.CrossRefGoogle Scholar
10. Thompson, A. C.. An equiperimetric property of Minkowski circles. Bull. London Math. Soc., 7 (1975), 271272.CrossRefGoogle Scholar