Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-23T04:50:36.580Z Has data issue: false hasContentIssue false

Minimal pairs of convex bodies in two dimensions

Published online by Cambridge University Press:  26 February 2010

Stefan Scholtes
Affiliation:
Institut für Statistik und mathematische Wirtschaftstheorie, Universität Karlsruhe, 7500 Karlsruhe 1, Germany.
Get access

Extract

In [7] the notion of minimal pairs of convex compact subsets of a Hausdorff topological vector space was introduced and it was conjectured, that minimal pairs in an equivalence class of the Hörmander-Rådström lattice are unique up to translation. We prove this statement for the two-dimensional case. To achieve this we prove a necessary and sufficient condition in terms of mixed volumes that a translate of a convex body in ℝn is contained in another convex body. This generalizes a theorem of Weil (cf. [10]).

Type
Research Article
Copyright
Copyright © University College London 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Alexandrov, A. D.. Zur Theorie der gemischten Volumina von konvexen Körpern. Mat. Sbomik, 2 (1937), part I 947972, part II 1205-1238 (Russian with German summary).Google Scholar
2.Alexandrov, A. D.. Konvexe Polyeder (Akademie Verlag, Berlin, 1958).Google Scholar
3.Bonnesen, T. and Fenchel, W.. Theorie der Konvexen Körper (Springer Verlag, Berlin, 1934).Google Scholar
4.Demyanov, V. F. and Rubinov, A. M.. Quasidifferential Calculus (Optimization Software Inc., Springer Verlag, 1986).Google Scholar
1.Fenchel, W. and Jessen, B.. Mengenfunktionen und konvexe Körper. Danske Vid. Selsk. Mat.-Fys. Medd., 16 (1938), 131.Google Scholar
6.Hörmander, L.. Sur la fonction d'appui des ensembles convexes dans une espace localement convexe. Arkiv för Math., 3 (1954), 181186.Google Scholar
7.Pallaschke, D.Scholtes, S. and Urbański, R.. On minimal pairs of convex compact sets. Bull Aca. Polon. Sci. Sér. Sci. Math., 39 (1991), 105109.Google Scholar
8.Rådström, H.. An embedding theorem for spaces of convex sets. Proc. Amer. Math. Soc., 3 (1952), 165169.CrossRefGoogle Scholar
9.Urbański, R.. A generalization of the Minkowski-Rådström-Hörmander-Theorem. Bull. Aca. Polon. Sci. Sér. Sci Math., 288 (1976), 709715.Google Scholar
10.Weil, W.. Decomposition of convex bodies. Mathematika, 21 (1974), 1925.CrossRefGoogle Scholar