Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-14T21:15:19.863Z Has data issue: false hasContentIssue false

A measure invariant under group endomorphisms

Published online by Cambridge University Press:  26 February 2010

J.-M. Belley
Affiliation:
Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1.
V. S. Prasad
Affiliation:
Université de Sherbrooke, Sherbrooke, Québec, Canada J1K 2R1.
Get access

Abstract

Let G be a locally compact abelian group. Then there is a finitely additive regular set function m defined on an algebra A of Borel sets in G, m(G) = 1, such that m(T-1F) = m(F) for all FA and all surjective group endomorphisms T of G onto G.

Type
Research Article
Copyright
Copyright © University College London 1982

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

B.Belley, J.-M.. A representation theorem and applications to topological groups. Trans. Amer. Math. Soc., 260 (1980), 267279.CrossRefGoogle Scholar
B.-M.Belley, J.-M. and Morales, P.. A generalization of Wiener's criteria for the continuity of a Borel measure. Studia Math, (to appear).Google Scholar
D.-S.Dunford, N. and Schwartz, J. T.. Linear Operators, Part I (Interscience, New York, 1958).Google Scholar
L1.Leader, S.. On universally integrable functions. Proc. Amer. Math. Soc., 6 (1955), 232234.CrossRefGoogle Scholar
L2.Loomis, L. H.. An introduction to harmonic analysis (Van Nostrand, New York, 1953).Google Scholar
M.Mycielski, J.. Finitely additive invariant measures (I). Coll. Math., 42 (1979), 309318.CrossRefGoogle Scholar
P.Pontryagin, L.. Topological groups (Gordon and Breach, New York, 1966).Google Scholar
R.Rosenbloom, P. C.. Quelques classes de problemes extrèmaux. Bull. Soc. Math. France, 80 (1952), 183215.CrossRefGoogle Scholar
T.Taylor, A.. Introduction to functional analysis (Wiley, New York, 1958).Google Scholar