Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-25T20:46:14.410Z Has data issue: false hasContentIssue false

Magneto-elastic wave propagation

Published online by Cambridge University Press:  26 February 2010

V. T. Buchwald
Affiliation:
Department of Mathematics, The Manchester College of Science and Technology.
A. Davis
Affiliation:
Department of Mathematics, The Manchester College of Science and Technology.
Get access

Extract

Previous workers in this field have only considered plane waves. In this paper the Fourier integral method recently devised by Lighthill is used to estimate displacements at large distances from a harmonic point source in an isotropic elastic medium with infinite electrical conductivity subject to a uniform magnetic field. The effect of the applied field is to introduce anisotropy, and the method used gives a complete geometrical description of wave and energy propagation.

Type
Research Article
Copyright
Copyright © University College London 1960

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Musgrave, M. J. P., “Elastic waves in anisotropic media”, I, II, Proc. Roy. Soc. A, 226 (1954), 339; III,Google Scholar
Proc. Roy. Soc A, 236 (1956), 352;Google Scholar
Progress in Physics, 22 (1959), 74.CrossRefGoogle Scholar
2.Synge, J. L., J. Math. Physics, 35 (1957), 323.CrossRefGoogle Scholar
3.Lighthill, M. J., Phil. Trans. Roy. Soc. A, 252 (1960), 397.Google Scholar
4.Buchwald, V. T., Proc. Roy. Soc. A, 253 (1959), 563.Google Scholar
5.Knopoff, L., J. Oeophys. Res., 60 (1955), 441.CrossRefGoogle Scholar
6.JrBanos, A.., Phys. Rev., 104 (1956), 300.CrossRefGoogle Scholar
7.Chadwick, V., International Congress of App. Mech., Brussels (1956).Google Scholar
8.Nardini, R., Rend. Sem. Mat. Vniv. Padova, 28 (1958), 225.Google Scholar
9.Lighthill, M. J., An introduction to Fourier analysis and generalised functions (Cambridge, 1958).CrossRefGoogle Scholar
10.Bason, G., Fulton, J. and Sneddon, I. N., Phil. Trans. Roy. Soc. A, 248 (1956), 575.Google Scholar
11.Duff, G. F. D., Phil. Trans. Roy. Soc. A, 252 (1960), 249.Google Scholar
12.Kaliski, S. and Petykiewiez, J., Proc. Vib. Problems, Warsaw, 2 (1959), 17.Google Scholar