Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-25T21:09:55.339Z Has data issue: false hasContentIssue false

A locally uniformly convex renorming for certain ℒ(K)

Published online by Cambridge University Press:  26 February 2010

R. G. Haydon
Affiliation:
Brasenose College, Oxford, OX1 4AJ
C. A. Rogers
Affiliation:
Department of Statistical Science, University College London, Gower Street, London, WC1E 6BT
Get access

Abstract

If a scattered compact space K is such that its ω1-th derived set K1) is empty then the Banach space ℒ(K) admits an equivalent locally uniformly convex norm.

Type
Research Article
Copyright
Copyright © University College London 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Day, M. M.. Normed linear spaces (3rd ed.) (Springer-Verlag, Berlin-Heidelberg-New York, 1973).CrossRefGoogle Scholar
2.Deville, R.. Problemes de renormages. J. Fund. Anal., 68 (1986), 117129.Google Scholar
3.Deville, R.. Convergence ponctuelle et uniforme sur un espace compact. Bull. Acad. Polon. Sci. (to appear).Google Scholar
4.Deville, R. and Godefroy, G.. Some applications of projective resolutions of unity (preprint).Google Scholar
5.Godefroy, G., Troyanski, S. L., Whitfield, J. and Zizler, V.. Locally uniformly rotund renormings and injections into c o(Γ). Canad. Math. Bull, 27 (1984), 494500.CrossRefGoogle Scholar
6.Godefroy, G., Troyanski, S. L., Whitfield, J. and Zizler, V.. Three-space problem for locally uniformly rotund renormings of Banach spaces. Proc. Amer. Math. Soc, 94 (1985), 647652.Google Scholar
7.Haydon, R. G.. A counterexample to several questions about scattered compact spaces (to appear), Bull. London Math. Soc.Google Scholar
8.Jayne, J. E., Namioka, I. and Rogers, C. A., σ-fragmentable Banach spaces (preprint).Google Scholar
9.Namioka, I. and Phelps, R. R.. Banach spaces which are Asplund spaces. Duke Math. J., 42 (1875), 735750.Google Scholar
10.Semadeni, Z.. Banach spaces of continuous functions (P.W.N., Warszawa, 1971).Google Scholar